首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在区间[a,b]上连续,在(a,b)内f′(x)存在.设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b.试证:在区间(a,b)内至少存在一点ξ,使f″(ξ)=0.
已知函数f(x)在区间[a,b]上连续,在(a,b)内f′(x)存在.设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b.试证:在区间(a,b)内至少存在一点ξ,使f″(ξ)=0.
admin
2016-11-03
49
问题
已知函数f(x)在区间[a,b]上连续,在(a,b)内f′(x)存在.设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b.试证:在区间(a,b)内至少存在一点ξ,使f″(ξ)=0.
选项
答案
直线AB的方程是 y=[*](x一a)+f(a). 引进辅助函数 F(x)=f(x)一[[*](x一a)+f(a)]. 它的几何意义是连接A、B两点的直线与曲线f(x)之差.由题设知在A点、B点及C点处这两条线相交,自然有 F(a)=F(b)=F(c)=0, 也就是说在这三点处两函数的函数值相同. 由已知条件F(a)=F(c)=F(b)=0知,函数F(x)在区间[a,c]和[c,b]上满足罗尔定理.因此,在区间(a,c)内至少存在一点ξ
1
,使得F′(ξ
1
)=0;在区间(c,b)内至少存在一点ξ
2
,使得F′(ξ
2
)=0. 因a<ξ
1
<c<ξ
2
<b,且F″(x)=f″(x)在(a,b)内存在,故F′(x)在区间[ξ
1
,ξ
2
]上满足罗尔定理条件.于是,在区间(ξ
1
,ξ
2
)内至少存在一点ξ,显然ξ也在区间(a,b)内,使得 F″(ξ)=f″(ξ)=0.
解析
利用曲线f(x)与直线AB的方程之差作一辅助函数F(x),由题设知这两条线有三个交点,因而F(x)有三个零点.对F(x)两次使用罗尔定理,在此基础上再对F′(x)使用一次罗尔定理,则存在ξ∈(a,b),使F″(ξ)=0.
转载请注明原文地址:https://kaotiyun.com/show/VTu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
用区间表示下列点集,并在数轴上表示出来:(1)I1={x||x+3|<2}(2)I2={x|1<|x-2|<3}(3)I3={x||x-2|<|x+3|}
用分部积分法求下列不定积分:
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤22;
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
已知齐次线性方程组其中,试讨论a1,a2,…,an和b满足何种关系时,(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
设函数Fn(x)=其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:
假设随机变量X1,X2,…,X2n独立同分布,且E(Xi)=D(Xi)=1(1≤i≤2n),如果则当常数c=________时,根据独立同分布中心极限定理,当n充分大时,Yn近似服从标准正态分布.
随机试题
交叉瘫的病变部位是
具有降逆止呃、益气清热功效的方剂是
下列关于城市地下空间的表述,错误的是()
监理合同约定,委托人免费提供给监理机构的测量设备,监理工作完成后,监理人( )。
隧道监控量测时,当位移一时问曲线出现反弯点时,则表明围岩()。
下列各项中会使公司采用低股利政策的是()。
Theirbusinessflourishedatitsnewlocationayearlaterowingtotheirjointeffortsandhardwork.
除了宪政保障以外。人权的国内法保护还包括哪几个方面?
(7)属于系统软件,它直接执行高级语言源程序或与源程序等价的某种中间代码。
ReadthearticlebelowabouttheBritishlongerworkinghours.Foreachquestion23-28.choosethecorrectanswer.Mark
最新回复
(
0
)