首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在区间[a,b]上连续,在(a,b)内f′(x)存在.设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b.试证:在区间(a,b)内至少存在一点ξ,使f″(ξ)=0.
已知函数f(x)在区间[a,b]上连续,在(a,b)内f′(x)存在.设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b.试证:在区间(a,b)内至少存在一点ξ,使f″(ξ)=0.
admin
2016-11-03
70
问题
已知函数f(x)在区间[a,b]上连续,在(a,b)内f′(x)存在.设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b.试证:在区间(a,b)内至少存在一点ξ,使f″(ξ)=0.
选项
答案
直线AB的方程是 y=[*](x一a)+f(a). 引进辅助函数 F(x)=f(x)一[[*](x一a)+f(a)]. 它的几何意义是连接A、B两点的直线与曲线f(x)之差.由题设知在A点、B点及C点处这两条线相交,自然有 F(a)=F(b)=F(c)=0, 也就是说在这三点处两函数的函数值相同. 由已知条件F(a)=F(c)=F(b)=0知,函数F(x)在区间[a,c]和[c,b]上满足罗尔定理.因此,在区间(a,c)内至少存在一点ξ
1
,使得F′(ξ
1
)=0;在区间(c,b)内至少存在一点ξ
2
,使得F′(ξ
2
)=0. 因a<ξ
1
<c<ξ
2
<b,且F″(x)=f″(x)在(a,b)内存在,故F′(x)在区间[ξ
1
,ξ
2
]上满足罗尔定理条件.于是,在区间(ξ
1
,ξ
2
)内至少存在一点ξ,显然ξ也在区间(a,b)内,使得 F″(ξ)=f″(ξ)=0.
解析
利用曲线f(x)与直线AB的方程之差作一辅助函数F(x),由题设知这两条线有三个交点,因而F(x)有三个零点.对F(x)两次使用罗尔定理,在此基础上再对F′(x)使用一次罗尔定理,则存在ξ∈(a,b),使F″(ξ)=0.
转载请注明原文地址:https://kaotiyun.com/show/VTu4777K
0
考研数学一
相关试题推荐
0
A、 B、 C、 D、 C
0
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
求下列有理函数不定积分:
根据题意设X1,X2,…,Xn是一个简单随机样本,因此X1,X2,…,Xn相互独立,且与总体同分布,从而可知[*]
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
设m,n均是正整数,则反常积分的收敛性
求由方程2x2+2y2+z2+8xz—z+8=0所确定的隐函数z=z(x,y)的极值.
某闸门的形状与大小如右图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
随机试题
被告人刘某,因抢劫罪被检察院向某县级人民法院提起公诉,中途刘某脱逃,法院宣布延期审理。后刘某归案,法院以抢劫罪和脱逃罪对刘某数罪并罚判处无期徒刑。刘某不服提出上诉,检察院也以量刑过重提出抗诉。受理上诉的中级人民法院对此进行了书面审理,认为原法院无管辖权,但
平流沉淀池的沉淀时间一般为()h。
高桩码头工程施工组织设计编制中,“施工的总体部署”包括叙述整个工程施工的总设想和安排,各()和重要建筑物的施工顺序及相互之间的连接关系;施工船机的配备;预制构件的加工和运输等内容。
在以下各项中,可以作为货币政策的中介目标的是()。
如果期汇比现汇便宜,则说明该外汇()。
温州是浙江省降水量最丰富的地区,也是我国的多雨地带。()
阅读下面文字。完成问题。河声入梦来匡文立从小习惯了身边伴着这样一条河流,习惯每天出门都看得见它
以下属于软件危机典型表现的是()。
由于逻辑错误或系统错误使得事务没有按预期的要求成功完成,这属于()。
Toitsfans,itisaddictive.Tothemedia,itisapromisingmoney-maker.Sudoku,anoldpuzzlelongpopularinJapanisfast【4
最新回复
(
0
)