首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二阶常系数线性微分方程y〞+ay′+by=ceχ有特解y=e2χ+(1+χ)eχ,确定常数a,b,c,并求该方程的通解.
设二阶常系数线性微分方程y〞+ay′+by=ceχ有特解y=e2χ+(1+χ)eχ,确定常数a,b,c,并求该方程的通解.
admin
2019-02-23
66
问题
设二阶常系数线性微分方程y〞+ay′+by=ce
χ
有特解y=e
2χ
+(1+χ)e
χ
,确定常数a,b,c,并求该方程的通解.
选项
答案
将y=e
2χ
+(1+χ)e
χ
代入原方程得 (4+2a+b)e
2χ
+(3+2a+b)e
χ
+(1+a+b)χe
χ
=ce
χ
, 则有[*] 解得a=-3,b=2,c=-1, 原方程为y〞-3y′+2y=-e
χ
. 原方程的特征方程为λ
2
-3λ+2=0,特征值为λ
1
=1,λ
2
=2,则y〞-3y′+2y=0的通解为y=C
1
e
χ
+C
2
e
2χ
,于是原方程的通解为y=C
1
e
χ
+C
2
e
2χ
+e
2χ
+(1+χ)e
χ
.
解析
转载请注明原文地址:https://kaotiyun.com/show/X4j4777K
0
考研数学二
相关试题推荐
[*]
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
曲线y=的渐近线的条数为().
设A=,则A-1=________
设α1=(1,2,-3)T,α2(3,0,1)T,α3(9,6,-7)T,β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T.已知r(α1,α2,α3)=r(β1,β2,β3),并且β可用α1,α2,α3线性表示,求a,b.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,证明:ξ∈(a,b)使得f(b)-2f(b-a)2f〞(ξ).
已知ξ是n维列向量,且ξTξ=1,设A=E-ξξT,证明:|A|=0.
计算下列反常积分(广义积分)的值:
设A是n阶矩阵,证明方程组Aχ=b对任何b都有解的充分必要条件是|A|≠0.
用正交变换将二次型f(x1,x2,x3)=x12一2x22一2x32一4x1x2+4x1x3+8x3x3化为标准形,并给出所施行的正交变换。
随机试题
A、It’swarmandwet.B、It’scoldandwet.C、It’scoolanddry.D、It’shotanddry.A
Anewcameasasurprisethatanelderlywomandiedyesterdayafter【21】knockeddownbyamotoristwhohadmadeno【22】tobrake(刹
某患者,男,59岁,BP140/95mmHg,他的血压属于()
脂质体由类脂质双分子层膜构成,其双分子层厚度约为4nm。类脂质膜的主要成分为磷脂和胆固醇。由于结构上类似生物膜,故脂质体又被称为“人工生物膜”。其在临床应用存在的问题主要有()。
根据包衣所用材料的不同,包衣片可分为()。
工程量清单汇总表中的项目包括()
个人信用贷款期限在1年(含1年)以内的,一般采取()的还款方式。
原持有的对被投资单位具有控制的长期股权投资,因部分处置等原因导致持股比例下降,不能再对被投资单位实施控制、共同控制或重大影响的,应改按金融工具确认和计量准则进行会计处理,丧失控制之日剩余股权的公允价值与账面价值之间的差额计入当期投资收益。()
在下列设置小海龟的基本命令中,()是转向命令。
Themajorityofthepopulationintheworldmightdrinkonlytwolitersofwateraday,buttheyconsumeabout3,000litersada
最新回复
(
0
)