首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确。
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确。
admin
2019-03-11
33
问题
设A是4×5矩阵,α
1
,α
2
,α
3
,α
4
,α
5
是A的列向量组,r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则( )正确。
选项
A、A的任何3个行向量都线性无关.
B、α
1
,α
2
,α
3
,α
4
,α
5
的一个含有3个向量的部分组(I)如果与α
1
,α
2
,α
3
,α
4
,α
5
等价,则一定是α
1
,α
2
,α
3
,α
4
,α
5
的最大无关组.
C、A的3阶子式都不为0.
D、α
1
,α
2
,α
3
,α
4
,α
5
的线性相关的部分组含有向量个数一定大于3.
答案
B
解析
r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,说明α
1
,α
2
,α
3
,α
4
,α
5
的一个部分组如果包含向量超过3个就一定相关,但是相关不一定包含向量超过3个.(D)不对.
r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则A的行向量组的秩也是3,因此存在3个行向量线性无关,但是不是任何3个行向量都线性无关.排除(A).
A的秩也是3,因此有3阶非零子式,但是并非每个3阶子式都不为0,(C)也不对.
下面说明(B)对.(I)与α
1
,α
2
,α
3
,α
4
,α
5
等价,则(I)的秩=r(α
1
,α
2
,α
3
,α
4
,α
5
)=3=(I)中向量的个数,于是(I)线性无关,由定义(I)是最大无关组.
转载请注明原文地址:https://kaotiyun.com/show/VWP4777K
0
考研数学三
相关试题推荐
设函数f(x)任点x=a处可导,则函数丨f(x)丨在点x=a处不可导的允分条件是
若事件A和B同时出现的概率P(AB)=0,则()
设幂级数an(x一2)n在x=6处条件收敛,则幂级数(x一2)2n的收敛半径为().
与α1=(1,一1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是______________。
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交.则秩r(β1,β2,β3,β4)=__________.
已知A是3阶实对称矩阵,且Aα=α,其中α=(1,1,2)T.如果A的另外两个特征值是3(二重根),则λ=3的特征向量是_________.
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,,X(n)=max(X1,…,Xn).求θ的矩估计量和最大似然估计量;
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得P{|-μ|≥2}≤______.
设则f′(x)=____________.
随机试题
《八声甘州》的主要抒情方法有
脑出血最常见的部位是
定喘汤的证治要点是橘皮竹茹汤的证治要点是
下列氨基糖苷类抗生素均对前庭功能有损害,表现为眩晕、恶心、呕吐、眼球震颤和平衡障碍,发生率最高的药是
法律责任和法律制裁是两个内涵和外延均相同的法律概念。一个主体如果需要承担法律责任,必然意味着要接受法律制裁。()
考古学是研究如何寻找和获取古代人类社会的实物遗存.以及如何依据这些遗存来研究人类社会历史的一门科学。换句话说,考古学是以科学发掘为基础、通过实物研究历史的学科。根据上述定义,下列研究属于考古学的是()。
(网络新词)不作死就不会死
下列关于邮件系统工作过程的描述中,错误的是()。
Starttoday【C1】______our30dayssetandsaveover£20bybuyingthesetrather【C2】______theindividualproducts!FitL
ForgetBrother,CanYouSpareaDime?Thethemesongofthisrecessionmightwellbe"Mother,CanYouWriteaCheck?"Thedist
最新回复
(
0
)