首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确。
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确。
admin
2019-03-11
36
问题
设A是4×5矩阵,α
1
,α
2
,α
3
,α
4
,α
5
是A的列向量组,r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则( )正确。
选项
A、A的任何3个行向量都线性无关.
B、α
1
,α
2
,α
3
,α
4
,α
5
的一个含有3个向量的部分组(I)如果与α
1
,α
2
,α
3
,α
4
,α
5
等价,则一定是α
1
,α
2
,α
3
,α
4
,α
5
的最大无关组.
C、A的3阶子式都不为0.
D、α
1
,α
2
,α
3
,α
4
,α
5
的线性相关的部分组含有向量个数一定大于3.
答案
B
解析
r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,说明α
1
,α
2
,α
3
,α
4
,α
5
的一个部分组如果包含向量超过3个就一定相关,但是相关不一定包含向量超过3个.(D)不对.
r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则A的行向量组的秩也是3,因此存在3个行向量线性无关,但是不是任何3个行向量都线性无关.排除(A).
A的秩也是3,因此有3阶非零子式,但是并非每个3阶子式都不为0,(C)也不对.
下面说明(B)对.(I)与α
1
,α
2
,α
3
,α
4
,α
5
等价,则(I)的秩=r(α
1
,α
2
,α
3
,α
4
,α
5
)=3=(I)中向量的个数,于是(I)线性无关,由定义(I)是最大无关组.
转载请注明原文地址:https://kaotiyun.com/show/VWP4777K
0
考研数学三
相关试题推荐
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设函数f(x)=,则()
设A=,那么(P-1)2010A(Q2011)-1=()
设则f’(t)=___________.
10个同规格的零件中混入3个次品,现在进行逐个检查,则查完5个零件时正好查出3个次品的概率为________。
求其中D由直线x=一2,y=0,y=2及曲线所围成.
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f"(x)>g"(x)(x>a).证明:当x>a时,f(x)>g(x).
设随机变量X和Y的联合密度为(I)试求X的概率密度f(x);(II)试求事件“X大于Y”的概率P{X>Y};(Ⅲ)求条件概率P{Y>1|X<0.5}.
设t>0,则当t→0时,是t的n阶无穷小量,则n为().
设随机变量X方差为2,则根据切比雪夫不等式有估计P{|X-E(X)|≥2}≤______.
随机试题
简述Excel2010如何快速复制单元格。
在党的基本路线中,建设“富强、民主、文明、和谐的社会主义现代化国家”是党在社会主义初级阶段的()
微分方程xy’=y的通解是()
关于慢性肾炎,下述哪项说法正确
全麻患者完全清醒的标志是
可用于高温、严重污染、高海拔等严酷条件场所,体积小,成本较高的金属封闭开关设备是()。
班主任在班级管理中的地位不包括()。
下列关于因特网的网络互联层的说法,(26)是正确的。
Tohis(disappoint)______,hedidn’tpasstheexaminspiteofhisgreatefforts.
With10,600bicyclesincirculation,Pariscityofficialsarehopingtheprogramwillprovidepeoplewithmoreenvironmentallyf
最新回复
(
0
)