首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: 存在η∈(一1,1),使得f″(η)+f′(η)=1.
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: 存在η∈(一1,1),使得f″(η)+f′(η)=1.
admin
2019-06-09
35
问题
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:
存在η∈(一1,1),使得f″(η)+f′(η)=1.
选项
答案
证一 因待证等式可改写为[f′(x)+f(x)一x]′∣
x=ξ
=0,故作辅助函数 F(x)=f′(x)+f(x)一x,因F(1)=f′(1)+f(1)一1=f′(1), F(一1)=f′(一1)+f(一1)+1=f′(一1)一f(1)+1=f′(一1)=f′(1) (因f′(x)为偶函数). 显然F(x)在[-1,1]上可导,满足罗尔定理的条件,由该定理知,存在η∈(一l,1)使 F′(η)=0,即[f′(x)+f(x)一x]′∣
x=ξ
=f″(η)+f′(η)一1=0. 证二 待证等式可改写为[f′(η)一1]′+f′(η)一l=0,两边乘以e
η
,则 e
η
[f′(η)一1]′+e
η
[f′(η)一1]={e
η
[f′(η)一1]}′=0. 于是令F(x)=e
x
[f′(x)一1].由(I)知存在ξ∈(0,1)使f′(ξ)=1,又因f′(x)为偶函数,故f′(一ξ)=f′(ξ)=1,则F(ξ)=e
ξ
[f′(ξ)一1]=0, F(一ξ)=e
-ξ
[f′(一ξ)一1]=e
-ξ
[f′(ξ)一1]=0. 在区间[一ξ,ξ]上对F(x)使用罗尔定理,得到存在η∈(-ξ,ξ)[*](一1,1)使得F′(η)=0. 由F′(x)=e
x
[f′(x)一1]+e
x
f″(x)得到F′(η)=e
η
[f′(η)一1]+e
η
f″(η)=0,即f″(η)+ f′(η)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/VYV4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0。证明在(0,π)内f(x)至少有两个零点。
曲线y=的斜渐近线方程为_________。
一容器的内侧是由图中(如图1—3—6)曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥)与x2+y2=1(y≤)连接而成。求容器的容积;
设2n阶行列式D的某一列元素及其余子式都等于a,则D=()
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
设z=f[xy,yg(x)],其中函数f具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求。
设函数z=z(x,y)由方程(z+y)x=xy确定,则=________。
设A为m阶实对称矩阵且正定,BT为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
交换积分次序∫-10dy∫21-yf(x,y)dx=_________。
设实对称矩阵,求可逆矩阵P,使P-1AP为对角形矩阵,并计算行列式|A—E|的值.
随机试题
A、Buyingmachines.B、Removingmanually.C、Applyingpoisons.D、Usinganimals.D
当双端固定桥两端基牙的支持力相差过大时会出现
男性,9岁。上颌前牙外伤8小时。口腔检查:右上1已萌出,松动Ⅰ°,叩痛(+),牙齿纵向冠根折裂,舌侧呈游离状。处理方法是()
关于轻质隔墙轻钢龙骨罩面板施工工艺的说法,正确的是()。
我国对生产企业的出U货物增值税退(免)税方式主要是( )。
德育的价值属性和对平行教育子系统的作用是德育的_________功能的两大含义。()
从所给的四个选项中,最符合左侧图形规律的一项是()。
作为一种现代产权制度,知识产权制度的本质是通过保护产权形成________,“给天才之火添加利益之油”,使全社会创新活力________,创新成果涌流。依次填入画横线部分最恰当的一项是()。
Whycouldn’tToddandJunefindoutwhosentthemthetickets?Whyweretheyworryingalltheevening?
5WeekstoaStress-FreeLife[A]Whowillyoubethisyear?Willyoubeabetter,wiserversionofyourselfbythetimethecal
最新回复
(
0
)