首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: 存在η∈(一1,1),使得f″(η)+f′(η)=1.
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: 存在η∈(一1,1),使得f″(η)+f′(η)=1.
admin
2019-06-09
41
问题
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:
存在η∈(一1,1),使得f″(η)+f′(η)=1.
选项
答案
证一 因待证等式可改写为[f′(x)+f(x)一x]′∣
x=ξ
=0,故作辅助函数 F(x)=f′(x)+f(x)一x,因F(1)=f′(1)+f(1)一1=f′(1), F(一1)=f′(一1)+f(一1)+1=f′(一1)一f(1)+1=f′(一1)=f′(1) (因f′(x)为偶函数). 显然F(x)在[-1,1]上可导,满足罗尔定理的条件,由该定理知,存在η∈(一l,1)使 F′(η)=0,即[f′(x)+f(x)一x]′∣
x=ξ
=f″(η)+f′(η)一1=0. 证二 待证等式可改写为[f′(η)一1]′+f′(η)一l=0,两边乘以e
η
,则 e
η
[f′(η)一1]′+e
η
[f′(η)一1]={e
η
[f′(η)一1]}′=0. 于是令F(x)=e
x
[f′(x)一1].由(I)知存在ξ∈(0,1)使f′(ξ)=1,又因f′(x)为偶函数,故f′(一ξ)=f′(ξ)=1,则F(ξ)=e
ξ
[f′(ξ)一1]=0, F(一ξ)=e
-ξ
[f′(一ξ)一1]=e
-ξ
[f′(ξ)一1]=0. 在区间[一ξ,ξ]上对F(x)使用罗尔定理,得到存在η∈(-ξ,ξ)[*](一1,1)使得F′(η)=0. 由F′(x)=e
x
[f′(x)一1]+e
x
f″(x)得到F′(η)=e
η
[f′(η)一1]+e
η
f″(η)=0,即f″(η)+ f′(η)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/VYV4777K
0
考研数学二
相关试题推荐
求齐次方程组的基础解系.
设f(x)为可导函数,且f’(x)严格单调增加,则F(x)=在(a,b]内()
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
微分方程y’’+2y’+5y=0的通解为_________。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵A,使得QTAQ=A。
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,l,1)T,α2=(1,2,4)T,α3=(1,3,9)T。将向量β=(1,1,3)T用α1,α2,α3线性表示;
求极限=_______.
设f(χ,y)是定义在区域0≤χ≤1,0≤y≤1上的二元连续函数,f(0,0)=-1,求极限=________.
若f(x)在(一∞,+∞)上连续,且f(x)=∫0xf(t)dt,试证:f(x)≡0(-∞<x<+∞).
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时,求f(0)与f(一1)的值;
随机试题
药学经济研究的主要问题是
根据疾病诊断的需要,灵活选用窗宽、窗位。颅脑CT图像常用脑窗摄影。窗宽80~100HU,窗位35HU左右。颅底、内听道病变;颅脑外伤;颅骨病变,或颅内病变侵犯颅骨,必须加摄骨窗。骨窗的窗宽1000~1400HU,窗位300~500HU。耳鸣及疑桥小脑角区病
能对肾功能进行监测的是
某1岁小儿因呕吐、腹泻、食欲差造成重度低渗性脱水,估计累积损失量应为()
工业污水生产周期在8h以内的,每()采样一次。
有担保流动资金贷款中,应重点调查的内容包括()。
下列关于激进型营运资本筹资策略的表述中,正确的是()。
以低于成本价格销售商品的行为中,属于不正当竞争的是()。
下列各项中,属于私法的有()。
在窗体中添加一个命令按钮(名为Command1)和一个文本框(名为Text1),然后编写如下事件过程:PrivateSubCommand1_Click()DimxAsInteger,yAsInteger,zAsInte
最新回复
(
0
)