首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上满足f"(x)>0,则f’(0),f’(1),f(1)-f(0)或f(0)-f(1)的大小顺序为( )。
设f(x)在[0,1]上满足f"(x)>0,则f’(0),f’(1),f(1)-f(0)或f(0)-f(1)的大小顺序为( )。
admin
2021-07-15
39
问题
设f(x)在[0,1]上满足f"(x)>0,则f’(0),f’(1),f(1)-f(0)或f(0)-f(1)的大小顺序为( )。
选项
A、f’(1)>f’(0)>f(1)-f(0)
B、f’(1)>f(1)-f(0)>f’(0)
C、f(1)-f(0)>f’(1)>f’(0)
D、f’(1)>f(0)-f(1)>f’(0)
答案
B
解析
由于在[0,1]上f"(x)>0,可知f’(x)在[0,1]上为单调增加函数,因此f’(1)>f’(0),由于f(x)在[0,1]上存在二阶导数,可知f(x)在[0,1]上连续,在(0,1)内可导,由拉格朗日中值定理知必定存在ξ∈(0,1),使f(1)-f(0)=f’(ξ),又由f’(x)单调增加,知f’(1)>f’(ξ)>f’(0),即f’(1)>f(1)-f(0)>f’(0).
故选B。
转载请注明原文地址:https://kaotiyun.com/show/Vhy4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次是α1,α2,α3,若P=(α1,2α3,一α2),则P一1AP=()
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④。α肯定是其特征向量的矩阵个数为()
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
已知向量组α1,α2,α3,α4线性无关,则向量组()
设为正项级数,则下列结论正确的是()
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是()
随机试题
在19世纪,为了保证选民免受他人干扰而表达自己的真正意愿,英、美、法等国先后实行了()
A.与相应的椎骨平面相差2节B.与相应的椎骨平面相差1节C.与相应的椎骨平面相差3节D.胸椎10~12之间E.胸椎12到腰1之间颈髓位于
事故调查组应根据有关证据、资料,分析事故的直接、间接原因和事故责任,提出整改措施和处理建议,编制()。
企业依借款合同向银行借入的期限在一年以内的借款称为( )。
在波士顿矩阵分析模型中,明星类业务的基本特征是()。
设f(x)连续,f(0)=0,f’(0)=1,求
下列关于RPR技术的描述中,错误的是()。
在公有派生时,派生类中定义的成员函数只能访问原基类的()。
AndrenaGravidaisthenameofawildbeedecliningintheUnitedKingdomandtheNetherlands.A(31)ofmonthsagotherecentd
现如今,越来越多的美国人来到中国求职。北京和上海这些经济发达的城市成为他们的首选目的地。由于受到金融危机的影响,美国的就业市场变得很惨淡。而中国发展迅速的经济和相对较低的生活成本吸引着美国求职者前来。许多刚刚毕业的美国大学生也加入到这股中国求职潮。同时,许
最新回复
(
0
)