设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。

admin2017-01-13  26

问题 设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。

选项

答案令F(x)=∫0xf(t)dt,0≤x≤π,则有F(0)=0,F(π)=0。又因为0=∫0πf(x)cosxdx=∫0πcosxdF(x)=F(x)cosx|0π+∫0πF(x)sinxdx=∫0πF(x)sinxdx,所以存在±∈(0,π),使F(ξ)sinξ=0,不然,则在(0,π)内F(x)sinx恒为正或恒为仍.与∫0πF(x)sinxdx=0矛盾,但当ξ∈(0,π)时,sinπ≠0,故F(ξ)=0。由以上证得,存在满足0<ξ<π的ξ,使得F(0)=F(ξ)=F(π)=0,再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ1∈(0,ξ),ξ2∈(ξ,π),使得F’(ξ1)=F’(ξ2)=0,即f(ξ1)=f(ξ2)=0。

解析
转载请注明原文地址:https://kaotiyun.com/show/Vxt4777K
0

最新回复(0)