首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
admin
2017-01-13
54
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=∫
0
π
f(x)cosdx=0。试证明在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0。
选项
答案
令F(x)=∫
0
x
f(t)dt,0≤x≤π,则有F(0)=0,F(π)=0。又因为0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x)=F(x)cosx|
0
π
+∫
0
π
F(x)sinxdx=∫
0
π
F(x)sinxdx,所以存在±∈(0,π),使F(ξ)sinξ=0,不然,则在(0,π)内F(x)sinx恒为正或恒为仍.与∫
0
π
F(x)sinxdx=0矛盾,但当ξ∈(0,π)时,sinπ≠0,故F(ξ)=0。由以上证得,存在满足0<ξ<π的ξ,使得F(0)=F(ξ)=F(π)=0,再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使得F’(ξ
1
)=F’(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/Vxt4777K
0
考研数学二
相关试题推荐
设函数f(x,y)、g(x,y)在有界区域D上连续,且g(x,y)≥0,试证必存在点(ε,η)∈D,使
设变换,求常数a.
设z=z(x,y)是由方程x2+y2-z=ψ(x+y+z)所确定的函数,其中ψ具有2阶导数且ψ’≠-1.求dz.
设函数,其中f是可微函数,则=________。
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)利用上一小题的结论计算定积分.
已知一抛物线通过x轴上的两点A(1,0),B(3,0).计算上述两个平面图形绕x轴旋转一周所产生的两个旋转体体积之比。
设区域D是由y轴与曲线x=cosy所围成,则二重积分3x2sin2ydxdy=________。
将二重积分f(x,y)dxdy=∫1edx∫0lnxf(x,y)dy化为先对x后对y的二次积分,则f(x,y)dxdy=________。
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式求导数f’(x).
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
随机试题
什么叫逆变?
关于急性胰腺炎低钙血症的叙述,错误的是
根据现行《生产过程危险和有害因素分类与代码》,以下属于化学性危险、有害因素的有()。
(操作员:苏会计;账套:201账套;操作日期:2014年1月31日)1月31日,计提所得税费用80000元,请填制记账凭证。
企业筹资采取积极型的筹资策略,通常会()。
下列关于无形资产税务处理的说法,正确的有()。
小李使用Photoshop软件编辑一张图片,图像大小参数如下图所示,存储时采用BMP格式,则其存储容量为()。
互联网怎样影响了我们的社会和生活,这看上去好像是个______的话题,每个人都能说上几句,但事实上,有几个人能把这个问题说清楚,说细致,说出点儿新意,说出点儿可意会不可言传的______。依次填入划横线部分最恰当的一项是:
Shouldaleaderstrivetobelovedorfeared?Thisquestion,famouslyposedbyMachiavelli,liesattheheartofJosephNye’sne
下列关于超文本的叙述中,哪一个是不正确的?
最新回复
(
0
)