首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵 其中k1,k2,k3为大于0的任意常数,证明A与B合同,并求出可逆矩阵C,使得CTAC=B。
设3阶实对称矩阵 其中k1,k2,k3为大于0的任意常数,证明A与B合同,并求出可逆矩阵C,使得CTAC=B。
admin
2021-10-02
95
问题
设3阶实对称矩阵
其中k
1
,k
2
,k
3
为大于0的任意常数,证明A与B合同,并求出可逆矩阵C,使得C
T
AC=B。
选项
答案
A所对应的二次型为 f(x
1
,x
2
,x
3
)=x
T
Ax =(a
1
+a
2
+a
3
)x
1
2
+(a
2
+a
3
)x
2
2
+a
3
x
3
2
+2(a
2
+a
3
)x
1
x
2
+2a
3
x
1
x
2
+2a
3
x
2
x
2
=a
3
(x
1
2
+2x
1
x
2
+x
2
2
+2x
1
x
3
+2x
2
x
3
+x
3
2
)+a
2
(x
1
2
+2x
1
x
2
+x
2
2
)+a
1
x
1
2
=a
1
x
1
2
+a
2
(x
1
+x
2
)
2
+a
3
(x
1
+x
2
+x
3
)
2
=[*] 令[*] 则f(x
1
,x
2
,x
3
)=k
3
a
1
y
1
2
+k
2
a
3
y
2
2
+k
1
a
3
y
3
2
=(y
1
,y
2
,y
3
)[*]=y
T
By, 又[*] 并将该式记为x=Cy,因|C|=[*]≠0,所以C为可逆矩阵,且C
T
AC=B,故A与B合同,且所求的可逆矩阵为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/VzR4777K
0
考研数学三
相关试题推荐
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为()
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
某五元齐次线性方程组的系数矩阵经初等变换化为则自由变量可取为①x4,x5;②x3,x5;③x1,x5;④x2,x3。那么正确的共有()
曲线的渐近线有().
若an收敛,则级数
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
设矩阵Am×n的秩为秩(A)=m<n,Em为m阶单位矩阵,下述结论中正确的是().
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x—t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
设f(x,y)为连续函数,则f(rcosθ,rsinθ)rdr等于()
设f(x)在[0,1]有连续导数,且f(0)=0,令M=,则必有()。
随机试题
Anyonewhohaseverattendedauniversityknowsthatthequalityoflecturersvariesgreatly.Afewareveryeffectivecommunica
A.上皮角化层出现角质栓塞B.上皮基底细胞液化变性及基底膜界限不清C.上皮增生伴有异常增生D.上皮萎缩、上皮异常增生或原位癌E.上皮明显增厚但细胞分化较好白斑的病理特征是
表皮样囊肿内含有哪种组织
在如图所示的电路中,Us单独作用时,电阻R流过的电流I’=1A,消耗的功率P’=5W;Is单独作用时,电阻R流过的电流I’’=2A,电阻尺消耗的功率P’’=20W;则Us和Is同时作用时,电阻R消耗的功率为()。
依据《烟花爆竹生产经营安全规定》,以下关于烟花爆竹生产企业和批发企业的相关管理,说法错误的是()。
入境、出境的人员、交通工具、运输设备以及可能传播检疫传染病的行李、货物、邮包等物品,都应当接受检疫,经过国境卫生检疫机关许可,方准入境或者出境。( )
卧推杠铃主要发展哪两块肌肉的力量?()
根据表格资料,回答问题:下列关于2001~2006年我国上市公司数目、上市股票数目,A股上市股票数目、B股上市股票数目年平均增长速度(顺次记为V1、V2、V3、V4)的比较正确的是()。
中国共产党在长征途中召开的遵义会议,集中解决了在当时具有决定意义的()
Insomecountries,thenationaltraditionalartsarefacingextinction.Somepeoplethinkthatthegovernmentshouldsupportthe
最新回复
(
0
)