设f(x)二阶连续可导且f(0)=f’(0)=0,f’’(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在X轴上的截距为u,求

admin2019-02-23  33

问题 设f(x)二阶连续可导且f(0)=f’(0)=0,f’’(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在X轴上的截距为u,求

选项

答案曲线y=f(x)在点(x,f(x))处的切线方程为Y-f(x)=f’(x)(X-x), 令Y=0得u=x-[*],由泰勒公式得 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/W4j4777K
0

最新回复(0)