首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶实对称矩阵A正定的充分必要条件是( )
n阶实对称矩阵A正定的充分必要条件是( )
admin
2019-03-23
106
问题
n阶实对称矩阵A正定的充分必要条件是( )
选项
A、二次型x
T
Ax的负惯性指数为零
B、存在可逆矩阵P使P
—1
AP=E。
C、存在n阶矩阵C使A=C
T
C
D、A的伴随矩阵A
*
与E合同。
答案
D
解析
A选项是必要不充分条件。这是因为R(f)=p+q≤n。
当q=0时,有R(f)=p≤n。此时有可能p<n,故二次型x
T
Ax不一定是正定二次型。因此矩阵A不一定是正定矩阵。例如f(x
1
,x
2
,x
3
)=x
1
2
+x
3
2
。
B选项是充分不必要条件。这是因为P
—1
AP=E表示A与E相似,即A的特征值全是1,此时A是正定的。但只要A的特征值全大于零就可保证A正定,因此特征值都是1属于不必要条件。
C选项中的矩阵C没有可逆的条件,因此对于A=C
T
C不能说A与E合同,也就没有A是正定矩阵的结论。例如
显然矩阵不正定。
关于选项D,由于
A正定
A
*
与E合同,
所以D选项是充分必要条件,故选D。
转载请注明原文地址:https://kaotiyun.com/show/WHV4777K
0
考研数学二
相关试题推荐
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
设A=,已知r(A*)+r(A)=3,求a,b应该满足的关系.
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则()正确。
设3阶矩阵A=,A-1XA=XA+2A,求X.
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
椭球面S2是椭圆绕戈轴旋转一周而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕x轴旋转一周而成。(I)求S1及S2的方程;(Ⅱ)求S1与S2之间的立体体积。
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。验证是A的
设总体X服从N(0,σ),X1,X2,…,Xn为取自总体X的一个简单随机样本,与S2分别为样本均值和样本方差,统计量T=(n一1),求E(T)和D(T).
某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由新招收的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年一月份统计的熟练工和非熟练工所占百分比分别为xn和yn,记成αn=若α0=,
随机试题
社会角色
请描述各种不同的绩效评估方法。
A、Shelostherowncoat.B、Shewantstokeephersonwarm.C、Itisverycoldatthetopofthemountain.D、Shelikesthecoatfo
五行中“木”的特性是
主治寒饮伏肺的药是()。
GPS测量按其精度分为()级。
【背景资料】某工程项目,业主通过招标方式确定了承包商,双方采用工程量清单计价方式签订了施工合同。该工程共有10个分项工程,工期150天,施工期为3月3日至7月30日。合同规定,工期没提前1天,承包商可获得提前工期奖1.2万元;工期每托后1天,承包
对任意θ∈(0,),有().
经济建设、改革开放、四项基本原则的相互关系是()。
无符号二进制整数10llOlO转换成十进制数是
最新回复
(
0
)