首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(k为常数)。 证明:如果f(a)>0,则方程f(x)=0在区间上有且仅有一个实根。
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(k为常数)。 证明:如果f(a)>0,则方程f(x)=0在区间上有且仅有一个实根。
admin
2019-08-09
68
问题
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(k为常数)。
证明:如果f(a)>0,则方程f(x)=0在区间
上有且仅有一个实根。
选项
答案
证一 根据定积分的保序性,在不等式f’(x)<k的两端从a到x积分,得到 ∫
a
x
f’(t)dt<∫
a
x
kdt=k(x-a) , 即 f(x)-f(a)<k(x-a), 亦即 f(x)<f(a)+k(x-a)(x>a)。 ① 令f(a)+k(x-a)=0,解得x=x
0
=a-f(a)/k,在式①中令x=x
0
得到f(x
0
)<0。 又f(a)>0,由零点定理知,f(x)=0在(a,x
0
)=(a,a-f(a)/k)内有实数根。 再由f’(x)<0(x>a),且f(x)在x≥a处连续知,f(x)在[a,a-f(a)/k]上单调减少,故方程f(x)=0在该区间只有一个实根。 证二 下用拉格朗日中值定理找出点x
0
,使f(x
0
)<0。由题设知,f(x)在[a,a-f(a)/k]上满足拉格朗日中值定理条件,故有 [*] 其中a<ξ<a-f(a)/k,因f’(x)<k<0,故f’(x)/k>1,因而由式②得到 [*] 于是所找的点即为x
0
=a-f(a)/k。 下面的证明与证一相同。
解析
[证题思路] 用零点定理证之,需找另一点x
0
,使f(x
0
)<0。下面用定积分性质找出x
0
,也可用拉格朗日中值定理找出x
0
,使f(x
0
)<0。
转载请注明原文地址:https://kaotiyun.com/show/WMc4777K
0
考研数学一
相关试题推荐
函数f(x,y)=exy在点(0,1)处带皮亚诺余项的二阶泰勒公式是()
设随机变量X服从参数λ=的指数分布,令Y=min(X,2),求随机变量Y的分布函数F(y).
设总体X~N(μ,σ2),μ,σ2未知,而X1,X2,…,Xn是来自总体X的样本.(Ⅰ)求使得∫a+∞(χ;μ,σ)dχ=0.05的点a的最大似然估计,其中f(χ;μ,σ2)是X的概率密度;(Ⅱ)求P{X≥2}的最大似然估计.
已知总体X的概率密度.f(χ)=(λ>0),X1,…,Xn为来自总体X的简单随机样本,Y=X2.(Ⅰ)求Y的期望EY(记EY为b);(Ⅱ)求λ的矩估计量和最大似然估计量;(Ⅲ)利用上述结果求b的最大似然估计量.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设B是3阶实对称矩阵,特征值为1,1,-2,并且α=(1,-1,1)T是B的特征向量,特征值为-2.求B.
已知随机变量X与Y相互独立且都服从参数为的0-1分布,即P{X=0}=P{X=1}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立.
已知随机变量X,Y的概率分布分别为P{X=-1}=,P{X=0}=,P{X=1}=;P{Y=0}=,P{Y=1}=,P{Y=2}=,并且P{X+Y=1}=1,求:(Ⅰ)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
随机试题
Insomecountriesasmanyasnineoutoftenadultsreadatleastonenewspaperaday.Seeninpurelybusinessterms,fewproduc
男性,22岁,大学生。平时性格内向,近2周来表现健谈,说话滔滔不绝、口若悬河,自觉脑子反应快,特别灵活,思维敏捷,说话的主题极易随环境而改变,无法静下心来学习,且并不认为自己有什么问题,由家属送入医院。该患者的表现多见于()
南北问题的实质是()
1997年和1982年ACR的SLE的诊断标准有什么不同
骨盐的主要成分是
“水谷之海”是
流行性脑脊髓膜炎的主要传播方式是()
肾脏具有内分泌功能。其分泌的非血管活性激素是()。
《刑法》第二百六十九条对转化型抢劫作出了规定,下列哪些选项不能适用该规定?()
下列项目中,属于会计估计变更的是()。
最新回复
(
0
)