首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(k为常数)。 证明:如果f(a)>0,则方程f(x)=0在区间上有且仅有一个实根。
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(k为常数)。 证明:如果f(a)>0,则方程f(x)=0在区间上有且仅有一个实根。
admin
2019-08-09
24
问题
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(k为常数)。
证明:如果f(a)>0,则方程f(x)=0在区间
上有且仅有一个实根。
选项
答案
证一 根据定积分的保序性,在不等式f’(x)<k的两端从a到x积分,得到 ∫
a
x
f’(t)dt<∫
a
x
kdt=k(x-a) , 即 f(x)-f(a)<k(x-a), 亦即 f(x)<f(a)+k(x-a)(x>a)。 ① 令f(a)+k(x-a)=0,解得x=x
0
=a-f(a)/k,在式①中令x=x
0
得到f(x
0
)<0。 又f(a)>0,由零点定理知,f(x)=0在(a,x
0
)=(a,a-f(a)/k)内有实数根。 再由f’(x)<0(x>a),且f(x)在x≥a处连续知,f(x)在[a,a-f(a)/k]上单调减少,故方程f(x)=0在该区间只有一个实根。 证二 下用拉格朗日中值定理找出点x
0
,使f(x
0
)<0。由题设知,f(x)在[a,a-f(a)/k]上满足拉格朗日中值定理条件,故有 [*] 其中a<ξ<a-f(a)/k,因f’(x)<k<0,故f’(x)/k>1,因而由式②得到 [*] 于是所找的点即为x
0
=a-f(a)/k。 下面的证明与证一相同。
解析
[证题思路] 用零点定理证之,需找另一点x
0
,使f(x
0
)<0。下面用定积分性质找出x
0
,也可用拉格朗日中值定理找出x
0
,使f(x
0
)<0。
转载请注明原文地址:https://kaotiyun.com/show/WMc4777K
0
考研数学一
相关试题推荐
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布.(Ⅰ)试求总体X的数学期望E(X)的矩估计量和最大似然估计量;(Ⅱ)检验所得估计是否为无偏估计.
假设总体X的方差DX存在,X1,…,Xn是取自总体X的简单随机样本,其样本均值和样本方差分别为,S2,则EX2的矩估计量是
设随机变量X~E(1),记Y=max(X,1),则E(Y)=
设α1,α2,α3,α4线性无关,β1=2α1+α3+α4,β2=2α1+α2+α3,β3=α2-α4,β4=α3+α4,β5=α2+α3.(1)求r(β1,β2,β3,β4,β5);(2)求β1,β2,β3,β4,β5的一个最大无关组
n阶矩阵A=的秩为n-1,则a=().
设随机变量X在区间(0,1)上服从均匀分布,当X取到χ(0<χ<1)时,随机变量Y等可能地在(χ,1)上取值.试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}.
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵B=,并且AB=0,求齐次线性方程组AX=0的通解.
已知线性方程组有解(1,-1,1,-1)T.(1)用导出组的基础解系表示通解;(2)写出χ2=χ3的全部解.
设y=y(x)是二阶线性常系数非齐次微分方程y"+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限
设y"一3y’+ay=一5e-x的特解形式为Axe-x,则其通解为__________.
随机试题
下图是一个简化的CPU与主存连接结构示意图(图中省略了所有多路选择器)。其中有一个累加寄存器AC、一个状态寄存器和其他四个寄存器(主存地址寄存器MAR、主存数据寄存器MDR、程序计数器PC和指令寄存器IR),各部件及其之间的连线表示数据通路,箭头表示信息传
以下静脉尿路造影叙述正确的是
女性,34岁,因原发性甲亢行甲状腺双侧次全切除术。有关术中操作,正确的是
迎随补泻法中的补法是
为了有效的进行项目目标控制,需要从多方面采取切实有效的措施,其中应包括( )等技术措施。
利用MACD进行行情预测,主要是从()方面进行。Ⅰ.切线理论Ⅱ.指标背离原则Ⅲ.DIF和DEA的取值Ⅳ.DIF和DEA的相对取值
根据关税的现行规定,下列表述正确的有()。
纵观改革开放30年的成败得失,我们可以发现这样一种看似奇特实则自然的规律,许多深刻影响社会变革的尝试与改革,都发诸民间,始于那些最______的人们身上,再自下而上,最终得到最高层的______和吸收,成为整个国家的政策或行为。这样的事例,包括农村联产承包
材料1据2014年10月30日《现代金报》报道:长沙61岁的刘先生出门晨练,突发心脏病仰面倒地。倒地后的33分钟内,先后有49人经过他身边,却无人报警。直到第50位路人拨打了电话,但此时老人已停止了呼吸……网友评价:莫让悲剧重演!扶不扶老人很纠结!材
Educationisalongprocessthatnotonlyprovidesuswithbasicskillssuchasliteracyandnumeracy,butisalsoessentialin
最新回复
(
0
)