首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
admin
2018-11-23
41
问题
设η
1
,η
2
,η
3
为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η
1
,η
2
,η
3
线性表示,并且r(A)=n-3,证明η
1
,η
2
,η
3
为AX=0的一个基础解系.
选项
答案
因为r(A)=n-3,所以AX=0的基础解系包含3个解.设γ
1
,γ
2
,γ
3
是AX=0的一个基础解系,则条件说明γ
1
,γ
2
,γ
3
可以用η
1
,η
2
,η
3
线性表示.于是有下面的关于秩的关系式: 3=(γ
1
,γ
2
,γ
3
)≤r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
)≤3, 从而r(γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
), 这说明η
1
,η
2
,η
3
和γ
1
,γ
2
,γ
3
等价,从而η
1
,η
2
,η
3
也都是AX=0的解;又r(η
1
,η
2
,η
3
)=3,即η
1
,η
2
,η
3
线性无关,因此是AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/69M4777K
0
考研数学一
相关试题推荐
设随机变量X的概率密度为,-∞<x<+∞,求:(1)常数C;(2)X的分布函数F(x)和P{0≤X≤1};(3)Y=e-|X|的概率密度fY(y).
设某产品的需求函数为Q=Q(p),其对价格P的弹性εP=2,则当需求量为10000件时,价格增加1元会使产品收益增加______元.
设函数μ(x,y,z)=1+x2/6+y2/12+z2/18,单位向量则=___________.
设随机变量(X,Y)的联合密度为f(x,y)=,则P(X>5|Y≤3)=___________.
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn)
设二维随机变量(X,Y)的分布函数为:一∞<x<+∞,一∞<y<+∞.求:(1)常数A,B,C;(2)(X,Y)的概率密度f(x,y);(3)关于X和Y的边缘密度fX(x)和fY(y).
对二事件A、B。已知P(A)=0.6,P(B)=0.7,那么P(AB)可能取到的最大值是______.P(AB)可能取到的最小值是_______.
设齐次线性方程组Am×nx=0的解全是方程b1x1+b2x2+-…+bnxn=0的解,其中x=(x1,x2,…,xn)T.证明:向量b=(b1,b2,…,bn)可由A的行向量组线性表出.
设随机变量X在区间(一1,1)上服从均匀分布,Y=X2,求(X,Y)的协方差矩阵和相关系数.
(95年)设X和Y为两个随机变量,且P{X≥0,Y≥0}=P{X≥0}=P{Y≥0}=则P{max(X,y)≥0}=_______.
随机试题
振荡电路中必须要有正反馈。
什么是有限责任公司?
补肝肾,行血脉,续筋骨,有补而不滞优点的药物是()
血浆凝固酶产自下列哪种细菌
请根据下文回答41—45题:当读图时代来临,视觉文化成为当代文化的一种主流形态而对人们耳濡目染之时,我们不能不关注新的文化现象和国民视觉素养培养这样一个重要问题。在全球化进程中发展多元文化、积极竞争话语权之时,我们不能不探讨如何向世界有效传播中华民
一个解决机场拥挤问题的节省成本的方案是在间距200到500英里的大城市间提供高速的地面交通。成功地实施这项计划的花费远远少于扩建现有的机场,并且能减少阻塞在机场和空中的飞机的数量。以上计划的支持者们为了论证该计划的正确性,最适于将下面哪一项,如果是正确的,
抚今追昔,100多年来中华民族寻梦追梦的波澜壮阔、沧桑巨变的历史图景,发人深省、催人奋进。()三句诗能深刻勾画中华民族的昨天、今天和明天。
讨论函数f(x)=(x>0)的连续性.
十进制整数64转换为二进制整数等于()。
Tommyhasalittledog.HernameisGoddy.Sheisprettyandinteresting.Tommylovesherverymuch.Theotherday,Goddywa
最新回复
(
0
)