首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)与g(χ)在区间[a,b]上连续,证明:[∫abf(χ)g(χ)dχ]2≤∫abf2(χ)dχ∫abg2(χ)dχ. (*)
设函数f(χ)与g(χ)在区间[a,b]上连续,证明:[∫abf(χ)g(χ)dχ]2≤∫abf2(χ)dχ∫abg2(χ)dχ. (*)
admin
2016-10-21
107
问题
设函数f(χ)与g(χ)在区间[a,b]上连续,证明:[∫
a
b
f(χ)g(χ)dχ]
2
≤∫
a
b
f
2
(χ)dχ∫
a
b
g
2
(χ)dχ. (*)
选项
答案
把证明定积分不等式 (∫
a
b
f(χ)g(χ)g(χ)dχ)
2
≤∫
a
b
f
2
(χ)dχ∫
a
b
g
2
(χ)dχ (*) 转化为证明重积分不等式. 引入区域D={(χ,y)|a≤χ≤b,a≤y≤b} (*)式左端=∫
a
b
f(χ)g(χ)dχ.∫
a
b
f(y)g(y)dy =[*][f(χ)g(y).f(y)g(χ)]dχdy≤[*][f
2
(χ)g
2
(y)+f
2
(y)g
2
(χ)dχdy =[*]f
2
(χ)g
2
(y)dχdy+[*]f
2
(y)g
2
(χ)dχdy =[*]∫
a
b
f
2
(χ)dχ∫
a
b
g
2
(y)dy+[*]∫
a
b
f
2
(y)dy∫
a
b
g
2
(χ)dχ =∫
a
b
f
2
(χ)dχ∫
a
b
g
2
(y)dy=(*)式右端.
解析
转载请注明原文地址:https://kaotiyun.com/show/WPt4777K
0
考研数学二
相关试题推荐
[*]
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明在[-a,a]上至少存在一点η,使得a3f"(η)=3∫-aaf(x)dx。
设f(x)在[0,+∞)上连续,且∫01f(x)dx<-,证明:至少存在一个ξ∈(0,+∞),使得f(ξ)+ξ=0
计算二重积分,其中D={(x,y)|(x-1)2+(y-1)2≤2,y≥x}.
计算积分,其中D={(x,y)|0≤y≤x,x2+y2≤2x}.
设an>0(n=1,2,…)且an收敛,常数λ∈,则级数________。
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).当L与直线y=ax所围成平面图形的面积为时,确定a的值。
设f(x)在[0,2]上可导,且|f’(x)|≤M,又f(x)在(0,2)内至少有一个零点,证明:|f(0)|+|f(2)|≤2M.
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________。
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
随机试题
下列哪项不是SLE淋巴结肿大的临床表现
检查脊柱的压痛的方法和临床意义正确的是
4周岁小儿的身长应为
在药品零售企业中,需要凭处方方可销售的特殊药品复方制剂除了()。
(2005年)pz波函数角度分布形状为()。
按时间分类,支付可分为()。
根据《个人外汇管理办法》的规定,个人外汇账户按账户性质可划分为()。
若商业银行核心资本距监管当局的要求相差较远,可以采取()的方式来提高资本充足率。
已知A是m×n矩阵,m<n证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
Onwhataspectofweatherforecastingdoestheconversationfocus?
最新回复
(
0
)