首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)与g(χ)在区间[a,b]上连续,证明:[∫abf(χ)g(χ)dχ]2≤∫abf2(χ)dχ∫abg2(χ)dχ. (*)
设函数f(χ)与g(χ)在区间[a,b]上连续,证明:[∫abf(χ)g(χ)dχ]2≤∫abf2(χ)dχ∫abg2(χ)dχ. (*)
admin
2016-10-21
98
问题
设函数f(χ)与g(χ)在区间[a,b]上连续,证明:[∫
a
b
f(χ)g(χ)dχ]
2
≤∫
a
b
f
2
(χ)dχ∫
a
b
g
2
(χ)dχ. (*)
选项
答案
把证明定积分不等式 (∫
a
b
f(χ)g(χ)g(χ)dχ)
2
≤∫
a
b
f
2
(χ)dχ∫
a
b
g
2
(χ)dχ (*) 转化为证明重积分不等式. 引入区域D={(χ,y)|a≤χ≤b,a≤y≤b} (*)式左端=∫
a
b
f(χ)g(χ)dχ.∫
a
b
f(y)g(y)dy =[*][f(χ)g(y).f(y)g(χ)]dχdy≤[*][f
2
(χ)g
2
(y)+f
2
(y)g
2
(χ)dχdy =[*]f
2
(χ)g
2
(y)dχdy+[*]f
2
(y)g
2
(χ)dχdy =[*]∫
a
b
f
2
(χ)dχ∫
a
b
g
2
(y)dy+[*]∫
a
b
f
2
(y)dy∫
a
b
g
2
(χ)dχ =∫
a
b
f
2
(χ)dχ∫
a
b
g
2
(y)dy=(*)式右端.
解析
转载请注明原文地址:https://kaotiyun.com/show/WPt4777K
0
考研数学二
相关试题推荐
1
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
级数(常数a>0)
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).当L与直线y=ax所围成平面图形的面积为时,确定a的值。
求曲线x2+y2=1与y2=x所围成的两个图形中较小的一块分别绕x轴、y轴旋转所产生的立体的体积。
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设矩阵A与B相似,且求a,b的值;
随机试题
耐甲氧西林的金黄色葡萄球菌出现,不仅对_______________耐药,而且对_______________、_______________、_______________、_______________等耐药。对其引起的感染,可选用________
酸败的油脂由于生成________而使其产生哈喇味。
A咖啡因B哌醋甲酯C尼可刹米D洛贝林E纳洛酮与解热镇痛药配伍用于治疗一般性头痛的是
关于含铁血黄素,下列选项错误的是
强效利尿药的作用机制是
个人理财业务中,关于流动性比例指标,下面说法正确的有()。
教室外的走廊上坐着陪读的家长,有的在闲聊,有的在看书、织毛衣。教室里坐着十几个八九岁的孩子,黑板上的课题是《水粉画:跳舞的小姑娘》。首先,教师在事先准备好的纸上一笔一笔地示范,并且边画边讲:“头发要画得竖起来,脸上的颜色是白色加一点点红色调出来的,跳绳的时
唯物辩证法和形而上学对立的焦点在于是否承认()。
RobertJ.OppenheimerwasafamousAmericanphysicist,whodirectedthedevelopmentofthefirstatomicbombs.Oppenheimerw
标准ASCII码字符集有128个不同的字符代码,它所使用的二进制位数是
最新回复
(
0
)