首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设有三元方程xy—zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
[2005年] 设有三元方程xy—zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
admin
2019-04-08
67
问题
[2005年] 设有三元方程xy—zlny+e
xz
=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
选项
A、只能确定一个具有连续偏导数的隐函数z=z(x,y)
B、可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)
C、可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)
D、可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
答案
D
解析
仅D入选.F(x,y,z)=0,其中F(x,y,z)=xy—zlny+e
xy
一1.显然,F在点(0,1,1)附近对x,y,z均有连续偏导数,且F(0,1,1)=0.
相应的三个偏导数为
F’
z
|
(0,1,1)
=(lny+xe
xz
)|
(0,1,1)
=0,
F’
y
|
(0,1,1)
=
=一1≠0,
F’
x
|
(0,1,1)
=(y+ze
xz
)|
(0,1,1)
=2≠0.
由隐函数存在定理知,在点(0,1,1)的一个邻域内,由方程F(x,y,z)=xy—zlny+e
xz
一1=0可以确定两个具有连续偏导数的隐函数y=y(x,z),x=x(y,z).
转载请注明原文地址:https://kaotiyun.com/show/WR04777K
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)的联合概率密度为求:(Ⅰ)系数A;(Ⅱ)(X,Y)的联合分布函数;(Ⅲ)边缘概率密度;(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率.
设λ为A的特征值.(1)证明:AT与A特征值相等;(2)求A2,A2+2A+3E的特征值;(3)若|A|≠0,求A—1,A*,E—A—1的特征值.
计算曲面积分(0≤z≤1)第一卦限的部分,方向取下侧.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得=f(ξ)-ξf′(ξ).
设已知线性方程组AX=β有解不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设A为m阶实对称阵且正定,B为m×n实矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设n阶矩阵A正定,X=(x1,x2,…,xn)T,证明:二次型为正定二次型.
某商店销售某种季节性商品,每售出一件获利5(百元),季度末未售出的商品每件亏损1(百元),以X表示该季节此种商品的需求量,已知X等可能的取值[1,100]中的任一正整数,问商店应提前贮备多少件该种商品,才能使获利的期望值达到最大.
假设总体X在非负整数集{0,1,2,…,k)上等可能取值,k为未知参数,x1,x2,…,Xn为来自总体X的简单随机样本值,则k的最大似然估计值为
随机试题
【背景资料】某工程,施工单位按招标文件中提供的工程量清单作出报价(见下表)。施工合同约定:工程预付款为合同总价的20%,从工程进度款累计总额达到合同总价10%的月份开始,按当月工程进度款的30%扣回,扣完为止;施工过程中发生的设计变更,采用以直接
全面强直-阵挛发作分为强直期、_______和_______三期。
女,60岁,发现主动脉瓣狭窄10年,快走时心前区憋闷3年。心电图示左心室肥厚。该患者治疗宜首选
甲公司向某银行贷款100万元,乙公司以其所有的一栋房屋作抵押担保,并完成了抵押登记。现乙公司拟将房屋出售给丙公司,通知了银行并向丙公司告知了该房屋已经抵押的事实。乙、丙订立书面买卖合同后到房屋管理部门办理过户手续。下列哪些说法是正确的?(2009年卷三第5
甲是某有限合伙企业的有限合伙人。在合伙协议无特别约定的情况下,甲在合伙期间未经其他合伙人同意实施的下列行为中,违反《合伙企业法》规定的是()。
2008年1月8日,张某看到某公司的招聘启事后,于1月10日到某公司应聘。1月11日双方就试用期、劳动待遇、在职培训、违约金等事项进行协商后,达成了口头协议。张某于1月15日正式上班,2月28日双方签订了书面协议。某公司在与张某建立劳动合同关系过程中不
2015年全球发展中地区饥饿人口的比例是1990~1992年的一半的有几个地区?()若南亚地区1992年总人口数为15亿,该地区平均人口年增长率为2%,那么2002年南亚地区饥饿人口总量为多少亿人?()
传记,从本质上说,是人的生命活动的记载,是人类生命的一种特殊载体。人的生命活动,不仅表现出生存和发展的渴求,而且表现出自身潜能的开发、释放。这种自身潜能的开发、释放,就是一种力的创造。创造,包括多种形式,有政治家治国平天下的才能展现,有哲学家、思想家在精神
朱子读书法有哪些基本内容?
管理信息系统的综合结构中有一种是把同一管理层次上的若干相关职能综合起来形成的。这种结构叫______。
最新回复
(
0
)