首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设有三元方程xy—zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
[2005年] 设有三元方程xy—zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
admin
2019-04-08
23
问题
[2005年] 设有三元方程xy—zlny+e
xz
=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
选项
A、只能确定一个具有连续偏导数的隐函数z=z(x,y)
B、可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)
C、可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)
D、可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
答案
D
解析
仅D入选.F(x,y,z)=0,其中F(x,y,z)=xy—zlny+e
xy
一1.显然,F在点(0,1,1)附近对x,y,z均有连续偏导数,且F(0,1,1)=0.
相应的三个偏导数为
F’
z
|
(0,1,1)
=(lny+xe
xz
)|
(0,1,1)
=0,
F’
y
|
(0,1,1)
=
=一1≠0,
F’
x
|
(0,1,1)
=(y+ze
xz
)|
(0,1,1)
=2≠0.
由隐函数存在定理知,在点(0,1,1)的一个邻域内,由方程F(x,y,z)=xy—zlny+e
xz
一1=0可以确定两个具有连续偏导数的隐函数y=y(x,z),x=x(y,z).
转载请注明原文地址:https://kaotiyun.com/show/WR04777K
0
考研数学一
相关试题推荐
计算曲面积分(0≤z≤1)第一卦限的部分,方向取下侧.
证明方程lnx=在(0,+∞)内有且仅有两个根.
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得=f(ξ)-ξf′(ξ).
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ε,η,ξ∈(1,2),使得.
设f(x)在[a,b]上连续可导,且f(a)=0.证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x—t)dt.
设函数f(u)在(0,+∞)内具有二阶导数,且z==0.(1)验证f"(u)+=0.(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x);
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
(2004年)设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛.
随机试题
对于欠缺显著性特征而申请的注册的商标,提出异议的请求人()
他命令销毁那些文件。
含有T细胞百分率最高的部位是
决明子具有的功效是钩藤具有的功效是
某公司准备投资开发新产品,现有A、B两个产品可供选择。根据市场预测,未来市场状况存在繁荣、一般、衰退三种可能性,概率分别为0.3、0.5和0.2,两种产品在不同市场状况的预计年报酬率如下表所示。为了做出正确决定,公司需进行风险评价。根据以上资料,回答下
已展出或委托代销的商品,均不属于企业的存货。()
以下审计程序中,能够增强应对舞弊风险审计程序的不可预见性的有()。
关于音频信息及其处理,下列说法不正确的是()。
根据宪法和相关法律规定,我国的村民委员会依法实行()。
Heisvery______inusingmoney.
最新回复
(
0
)