首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知两个向量组:α1=(1,2,3)T,α2=(1,0,1)T与(Ⅱ)β1=(-1,2,k)T,β2=(4,1,5)T,试问k取何值时(Ⅰ)与(Ⅱ)等价?并写出等价时(Ⅰ)与(Ⅱ)相互表示的线性表达式.
已知两个向量组:α1=(1,2,3)T,α2=(1,0,1)T与(Ⅱ)β1=(-1,2,k)T,β2=(4,1,5)T,试问k取何值时(Ⅰ)与(Ⅱ)等价?并写出等价时(Ⅰ)与(Ⅱ)相互表示的线性表达式.
admin
2016-01-23
62
问题
已知两个向量组:α
1
=(1,2,3)
T
,α
2
=(1,0,1)
T
与(Ⅱ)β
1
=(-1,2,k)
T
,β
2
=(4,1,5)
T
,试问k取何值时(Ⅰ)与(Ⅱ)等价?并写出等价时(Ⅰ)与(Ⅱ)相互表示的线性表达式.
选项
答案
对矩阵(α
1
,α
2
,β
1
,β
2
)作初等行变换,得 [*] 可见k=1时,β
1
,β
2
均可由α
1
,α
2
线性表示,此时由 [*] 得β
1
=α
1
-2α
2
,β
2
=[*] 当k=1时,对矩阵(β
1
,β
2
,α
解析
本题考查两个向量组的等价性问题,即考查这两个向量组能否互相线性表示,为此构造非齐次线性方程组.
x
1
α
1
+x
2
α
2
=β
j
(j=1,2)及x
1
β
1
+x
2
β
2
=α
i
(i=1,2),
分别对矩阵(α
1
,α
2
,β
1
,β
2
)与(β
1
,β
2
,α
1
,α
2
)作初等行变换,只要k的取值使得上述方程组都有解即可.
转载请注明原文地址:https://kaotiyun.com/show/WRw4777K
0
考研数学一
相关试题推荐
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
向量组α1,α2,α3,α4线性无关,则向量组().
设A=,已知AX=B有解,求X.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+α2+…+(n-1)αn-1-0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设n阶矩阵A满足A2+A=3E,则(A-3E)-1=________.
设u=u(x,y,z)连续可偏导,令若,证明:u仅为r的函数。
设A为n阶矩阵,A11≠0,证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设函数f(x)在区间[-1,1]上连续,则x=0是函数的().
已知曲面S:2x2+4y2+z2=4与平面π:2x+2y+z+5=0,求:曲面S上的点及其上的切平面与法线方程,使该切平面与平面π平行;
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
随机试题
沿海“赤潮”是水域中一些浮游生物暴发性增殖引起的水色异常现象,主要成因是近海海水污染和______。
生姜的功效是()防风的功效是()
橙皮苷转变为橙皮查耳酮苷的条件是
2010年6月甲房地产开发企业以出让方式取得某块国有建设用地的使用权,计划兴建一普通商品住宅小区,但由于开发资金不足,到2011年8月才开始动工建设。2011年10月就开始预售,2013年3月完工后又开始进行现房销售,并陆续交付使用给购买人。甲房地产开
有甲乙两宗房地产,报酬率相同。甲房地产的收益年限为50年,单价为3500元/m2,乙房地产收益年限为30年,单价为3000元/m2,那么乙的价格高于甲的价格。()
下列工作内容,属于安全评价中危险、有害因素辨识与分析工作内容的是()。
下列不属于基金管理人内部控制机制的是()。
非法出售已填好金额的增值税专用发票构成( )。
注意事项1.本题本由给定资料与作答要求两部分组成,考试时限为180分钟。其中,阅读给定资料参考时限为50分钟,作答参考时限为130分钟。满分150分。2.请在题本、答题卡指定位置上用黑色字迹的钢笔或签字笔填写自己的姓名和准考证号,并用2B铅笔在准考证号
Thepriceofabitcointopped$900lastweek,anenormoussurgeinvaluethatarrivedamidstCongressionalhearingswheretopU.
最新回复
(
0
)