首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,α1=(a,一a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=_________.
设A为三阶实对称矩阵,α1=(a,一a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=_________.
admin
2019-05-14
24
问题
设A为三阶实对称矩阵,α
1
=(a,一a,1)
T
是方程组AX=0的解,α
2
=(a,1,1-a)
T
是方程组(A+E)X=0的解,则a=_________.
选项
答案
1
解析
因为A为实对称矩阵,所以不同特征值对应的特征向量正交,因为AX=0及(A+E)X=0有非零解,所以λ
1
=0,λ
2
=一1为矩阵A的特征值,α
1
=(a,-a,1)
T
,α
2
=(a,1,1一a)
T
是它们对应的特征向量,所以有α
1
T
α
2
=a
2
一a+1一a=0,解得a=1.
转载请注明原文地址:https://kaotiyun.com/show/WS04777K
0
考研数学一
相关试题推荐
设Q(x,y)在平面xOy上具有一阶连续的偏导数,且∫L2xydx+Q(x,y)dy与路径无关,且对任意的t有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy,求Q(x,y).
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球颜色相同.
设f(x)在x0的邻域内有定义,并且=k,其中n为正整数,k≠0为常数,试讨论当n取不同的值时f(x0)是否为极值。
方程y"’+2y"=x2+xe-2x的特解形式为()。
在x=1处将函数f(x)=展成幂级数。
已知A是3×4矩阵,秩r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程组Aχ=0的任一解,求Aχ=0的基础解系.
设A,B都是n阶矩阵,且A2-AB=E,则r(AB-BA+2A)=_______.
设直角坐标(χ,y)与极坐标(r,θ)满足χ=rcosθ,y=rsinθ.若曲线г的极坐标方程是r=3-2sin0,求г上对应于θ=处的切线与法线的直角坐标方程.
设A为3阶矩阵,α1,α2,α3是3维线性无关的列向量,其中α1是齐次方程组Aχ=0的解,又知Aα2=α1+2α2,Aα3=α1-3α2+2α3.(Ⅰ)求矩阵A的特征值与特征向量;(Ⅱ)判断A是否和对角矩阵相似并说明理由;(Ⅲ
已知4维向量α1,α2,α3,α4线性相关,而α2,α3,α4,α5线性无关.(Ⅰ)证明α1可由α2,α3,α4线性表出;(Ⅱ)证明α5不能由α1,α2,α3,α4线性表出;(Ⅲ)举例说明α2能否由α1,α3,α4,α5线性表
随机试题
工程量计算的依据有()。
体内CO2分压最高的部位是
庐阳公司系某集团公司的全资子公司。因业务需要,集团公司决定庐阳公司分立为两个公司。鉴于庐阳公司已有的债权债务全部发生在集团公司内部,下列哪些选项是正确的?(2007年试卷三第79题)
我国行政首长负责制的行政首长进行决策最重要的关键环节是()。
下列游客行为中,不属于不文明旅游行为的是()。
根据左图的规律,右图“?”处应为()。
在关系中的各元组的(33)。
产品/服务资源的生命周期有四个阶段,分别是需求、获取、经营和管理、回收或分配。其中决定需要多少产品和资源,获取它们的计划,以及执行计划要求的度量和控制的阶段是
ThismonthSingaporepassedabillthatwouldgivelegalteethtothemoralobligationtosupportone’sparents.Calledthemain
Manycountrieshaveaholidaytocelebrateworkers’rightsonoraroundMay1,butLabourDayinCanadaiscelebratedonthefir
最新回复
(
0
)