首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次方程组为 其中ai≠0。讨论当a1,a2,…,an和6满足何种关系时: (Ⅰ)方程组仅有零解; (Ⅱ)方程组有非零解,在此情形条件下写出一个基础解系。
已知齐次方程组为 其中ai≠0。讨论当a1,a2,…,an和6满足何种关系时: (Ⅰ)方程组仅有零解; (Ⅱ)方程组有非零解,在此情形条件下写出一个基础解系。
admin
2018-01-26
63
问题
已知齐次方程组为
其中
a
i
≠0。讨论当a
1
,a
2
,…,a
n
和6满足何种关系时:
(Ⅰ)方程组仅有零解;
(Ⅱ)方程组有非零解,在此情形条件下写出一个基础解系。
选项
答案
对齐次线性方程组的系数矩阵A作初等变换,即 [*] (Ⅰ)当b≠0且b≠[*]a
i
时,R(A)=n,原方程组只有零解。 (Ⅱ)当b=0或b=[*]a
i
时,R(A)<n,原方程组有非零解。 ①当b=0时, [*] R(A)=1,原方程组与a
1
x
1
+a
2
x
2
+…+a
n
x
n
=0同解。 因为[*]a
i
≠0,所以a
1
,a
2
,…,a
n
不全为0。不失一般性,设a
n
≠0,则原方程组的一个基础解系(含n-1个线性无关的解向量)为 (a
n
,0,…,0,-a
1
)
T
,(0,a
n
,…,0,-a
2
)
T
,…, (0,0,…,a
n
,-a
n-1
)
T
。 ②当b=[*]a
i
时,因为[*]a
i
≠0,所以 [*] R(A)=n-1,原方程组的基础解系(含1个线性无关的解向量)为 (1,1,…,1,1)
T
。
解析
转载请注明原文地址:https://kaotiyun.com/show/WSr4777K
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)的概率密度为求:(1)方差D(XY);(2)协方差Cov(3X+Y,X一2Y).
设X,Y,Z是三个两两不相关的随机变量,数学期望全为零,方差都是1,求X-Y和Y—Z的相关系数.
求二阶常系数线性微分方程y’’+λy’=2x+1的通解,其中λ为常数.
求微分方程y’cosy=(1+cosxsiny)siny的通解.
设n阶矩阵A的元素全是1,则A的n个特征值是__________.
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α
已知线性方程组方程组有解时,求出方程组的全部解.
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=()。
随机试题
下列哪一项不能作为幽门梗阻的诊断依据
A.氨B.苯C.一氧化碳D.氰化物E.汞防毒面具滤料要求其滤毒性能好,不同毒物宜选用的适宜滤料:硫酸铜
下列菌属中的大多数成员甲基红阳性,动力阳性,苯丙氨酸脱氨酶阴性的是
关于监理实施细则编制依据、内容的审核,说法正确的是()。
下列各项中,不宜作为企业价值评估中折现率的经济参数包括()。
提出相对论的科学家是()。
新课程的核心理念是()。(云南省)
Innocircumstancescanmoreworkbegotoutofamachinethan______.
Whereistheconversationmostprobablytakingplace?What’sthewoman’smajor?
Wehopethatsuchabook______ishelpfulisonsalenow.
最新回复
(
0
)