首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:r(A+B)≤r(A)+r(B).
证明:r(A+B)≤r(A)+r(B).
admin
2015-08-17
49
问题
证明:r(A+B)≤r(A)+r(B).
选项
答案
设A=[α
1
,α
2
……α
n
],B=[β
1
β
2
……β
n
],则 A+B=[α
1
+β
1
,α
2
+β
2
,…,α
n
+β
n
]. 由于A+B的列向量组α
1
+β
1
,α
2
+β
2
,…,α
n
+β
n
都是由向量组α
1
,α
2
……α
n
,β
1
β
2
……β
n
线性表出的,故 r(α
1
+β
1
,α
2
+β
2
,…,α
n
+β
n
)≤r(α
1
,α
2
……α
n
,β
1
β
2
……β
n
). 又由于r(α
1
,α
2
……α
n
,β
1
β
2
……β
n
)≤r(α
1
,α
2
……α
n
)+r(β
1
β
2
……β
n
),故 r(A+B)=r(α
1
+β
1
,α
2
+β
2
,…,α
n
+β
n
) ≤r(α
1
,α
2
……α
n
,β
1
β
2
……β
n
) ≤r(α
1
,α
2
……α
n
)+r(β
1
β
2
……β
n
) =r(A)+r(B).
解析
转载请注明原文地址:https://kaotiyun.com/show/f1w4777K
0
考研数学一
相关试题推荐
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设fn(χ)=Cn1cosχ-Cn2cos2χ+…+(-1)n-1Cnncosnχ,证明:对任意自然数n,方程fn(χ)=在区间(0,)内有且仅有一个根.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(x)),B(b,f(b))的直线与曲线y=f(x)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f’’(ξ)=0.
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设A为n阶可逆矩阵,A2=|A|E.证明:A=A*.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα2,…,Ak-1α是线性无关的.
求矩阵A=的特征值与特征向量.
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解.(1)求A的特征值和特征向量.(2)求作正交矩阵Q和对角矩阵∧,使得
随机试题
(2014年)弱式有效市场假说认为,市场价格已充分反映出所有过去历史的证券价格信息。下列说法中,属于弱式有效市场所反映出的信息是()。
________在营销技术的发展中,这是企业经营思想的一次革命,其意义可与西方工业革命相提并论。
喉腔侧壁有上下两对矢状位的黏膜皱襞,上方称________,下方称________。
肾综合征出血热少尿期忌用的抗生素是
上题所述病例宜辨证
改革开放以来,我国司法机关始终围绕党的中心工作积极开展司法审判活动,特别是近年来,各级司法机关自觉服务于“保增长、保民生、保稳定”的工作大局,成效显著。关于法治服务于大局,下列哪一说法是不准确的?
清算组在公司清算期间可以行使( )职权。
影响个人劳动力供给意愿的因素有()。
甲委托乙前往丙厂采购男装,乙觉得丙生产的女装市场看好,便自作主张以甲的名义向丙订购。丙未问乙的代理权限,便与之订立了买卖合同。对此,下列说法是正确的是()。
ROM是指()。
最新回复
(
0
)