首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2) α4能否由α
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2) α4能否由α
admin
2015-08-17
27
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,一1,2,0]
T
.记a=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.问:(1)α
4
能否由α
1
,α
2
,α
3
,α
5
线性表出,说明理由;(2) α
4
能否由α<
选项
答案
(1)α
4
能由α
1
,α
2
,α
3
,α
5
线性表出.由线性非齐次方程组的通解[2,1,0,1]
T
+k[-1,一1,2,0]
T
知α
5
=(k+2)α
1
+(一k+1)α
2
+2kα
3
+α
4
,故α
4
=一(k+2)α
1
一(一k+1)α
2
—2kα
3
+α
5
. (2)α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程组的基础解系只有一个非零向量,故r(α
1
,α
2
,α
3
,α
4
a)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4—1=3,且由对应齐次方程组的通解知,α
1
一α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/fQw4777K
0
考研数学一
相关试题推荐
设,其中ψ为可微函数,求.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Xi
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Yi
求方程一(1一y2)tanx的通解以及满足y(0)=2的特解.
设A为m×n矩阵,B为n×p矩阵,证明r(AB)≥r(A)+r(B)-n.
已知二次型f(χ1,χ2,χ3)=XTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为.(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
设A为n阶可逆矩阵,A2=|A|E.证明:A=A*.
设A为n阶矩阵,且A2-2A-8E=O.证明:r(4E-A)+r(2E+A)=n.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα2,…,Ak-1α是线性无关的.
设A为mxn实矩阵,E为n阶单位矩阵,已知矩阵B=λE+ATA,试证当λ>0时矩阵B为正定矩阵.
随机试题
女性,25岁,昨晚吃过一碗剩饭后,当夜发生上腹痛,持续恶心、呕吐。体温36.5℃,上腹部压痛,肠鸣音活跃。白细胞总数、分类及粪常规正常。首先应考虑的诊断是
依据《农村土地承包法》规定,承包期内,承包方全家迁入小城镇落户的,应当()。
在违约责任的承担中,损失赔偿额应当( )。
下列项目中计征个人所得税时,允许从总收入中减除费用1600元的有()。
偿债能力状况修正指标中,()是对企业资金挂账的分析解剖,反映了企业由于经营亏损挂账而导致的对所有者权益的侵蚀程度。
沙漠化是由于自然因素和人类活动的影响而引起生态系统的破坏,使原来非沙漠地区出现了类似沙漠环境的变化。()
毛泽东系统阐述中国革命三大法宝的文章是《(共产党人)发刊词》。()
现实与虚构的_______让我们在《哈利.波特》系列电影中看到了一个虚幻与现实交错构成的现代伦敦。魔法与现代科技在一个_______的伦敦找到了奇妙的契合点。填入划横线部分最恰当的一项是()。
如果一个钻机每0.15秒钻一个孔,那么,该钻机1小时能钻多少个孔?()
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf’(ξ)ln
最新回复
(
0
)