首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2) α4能否由α
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2) α4能否由α
admin
2015-08-17
35
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,一1,2,0]
T
.记a=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.问:(1)α
4
能否由α
1
,α
2
,α
3
,α
5
线性表出,说明理由;(2) α
4
能否由α<
选项
答案
(1)α
4
能由α
1
,α
2
,α
3
,α
5
线性表出.由线性非齐次方程组的通解[2,1,0,1]
T
+k[-1,一1,2,0]
T
知α
5
=(k+2)α
1
+(一k+1)α
2
+2kα
3
+α
4
,故α
4
=一(k+2)α
1
一(一k+1)α
2
—2kα
3
+α
5
. (2)α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程组的基础解系只有一个非零向量,故r(α
1
,α
2
,α
3
,α
4
a)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4—1=3,且由对应齐次方程组的通解知,α
1
一α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/fQw4777K
0
考研数学一
相关试题推荐
袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,若以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数.求P(X=1|Z=0);
若四次方程a。x4+a1x3+a2x+a3x+a4=0有四个不同的实根,试证明4a。x3+3a1x2+2a2x+a3=0的所有根皆为实根.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
求证:方程lnx=在(0,+∞)内只有两个不同的实根.
设A,B都是可逆矩阵,证明可逆,并求它的逆矩阵。
一个袋内装有5个白球,3个红球.第一次从袋内任意取一个球,不放回,第二次又从袋内任意取两个球,Xi表示第i次取到的白球数(i=1,2).求:(X1,X2)的分布及边缘分布;
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,-2,1)T,η3=(-2,-1,2)T,它们的特征值依次为1,2,3,求A.
设A,B是满足AB=O的任意两个非零阵,则必有()。
随机试题
下列不是原发性肺动脉高压临床表现的是
A.用指、掌或肘部用力稳而匀进行单向的直线平推B.双手握患者肢体远端,用力做小幅度的上下颤动C.用拇指或掌按压体表D.用虚掌拍打患部E.使关节做被动的环转运动推拿按摩中的推法是
A.羚角钩藤汤B.镇肝息风汤C.天麻钩藤饮D.大定风珠E.阿胶鸡子黄汤
检验检疫机构不受理出口食品生产企业的免验申请。()
在国债期货交易中,成交价格由应付利息和交易价格两部分组成。()
一质点沿x轴运动,其坐标与时间的变化关系为x=4t-2t3,式中x,t分别以m,s为单位,试计算:3s末的瞬时加速度。
夏天,打开冰箱冷冻室的门,常常看到冷冻室中冒出一股白雾,这是()。
Q7WDS6AEGB8E54ZS6AXCRZXAERFVTCS6
根据《车辆购置税暂行条例》的规定,属于车辆购置税应税行为的有()。
在下列关于改革开放的表述中,正确的有()
最新回复
(
0
)