首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2) α4能否由α
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2) α4能否由α
admin
2015-08-17
64
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,一1,2,0]
T
.记a=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.问:(1)α
4
能否由α
1
,α
2
,α
3
,α
5
线性表出,说明理由;(2) α
4
能否由α<
选项
答案
(1)α
4
能由α
1
,α
2
,α
3
,α
5
线性表出.由线性非齐次方程组的通解[2,1,0,1]
T
+k[-1,一1,2,0]
T
知α
5
=(k+2)α
1
+(一k+1)α
2
+2kα
3
+α
4
,故α
4
=一(k+2)α
1
一(一k+1)α
2
—2kα
3
+α
5
. (2)α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程组的基础解系只有一个非零向量,故r(α
1
,α
2
,α
3
,α
4
a)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4—1=3,且由对应齐次方程组的通解知,α
1
一α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/fQw4777K
0
考研数学一
相关试题推荐
若四次方程a。x4+a1x3+a2x+a3x+a4=0有四个不同的实根,试证明4a。x3+3a1x2+2a2x+a3=0的所有根皆为实根.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(x)),B(b,f(b))的直线与曲线y=f(x)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f’’(ξ)=0.
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πcosxdx=0。证明在(0,π)内f(x)至少有两个零点。
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
求微分方程xy’’+3y’=0的通解.
证明:
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的三阶无穷小,求y(x).
设A=有三个线性无关的特征向量,求a及An.
随机试题
临产后宫缩的作用是()
患者,女性,55岁。绝经5年,近3个月阴道水样白带,近半月出现阴道间断少量流血。妇科检查:宫颈光滑,宫体稍大且软,附件未扪及。行诊断性刮宫刮出多量较脆内膜。最可能的诊断是
体外循环中,关于温度的监测错误的是()
某开发公司现以1200万元购买一块土地,根据批准的规划设计方案,开发商计划在1年内建成一栋建筑面积为3万m2的住宅楼,预计总售价可达到6000万元,现实一年期贷款利息率为5.85%,销售税费率控制在6%,开发商要实现预付资本20%以上的投资回报率。(利息按
[2012年第060题,2009年第065题]第一个把法国古典主义的原则灌注到园林艺术中去的是:
公路机电工程的内容组成包括()。
根据《企业破产法》的规定,重整计划由()负责执行。
下列关于房产税纳税义务发生时间的表述中,正确的有()。
A、B、C、D、A
根据情景用英文写一则通知,字数100左右。活动:英语讲演会时间:星期四10月26日8:00—10:00地点:210演讲室报告人:北京外国语大学许教授主题:美国英语和英国英语的区别参加人员:英语系全体师生注意事项:准时到会。会后进
最新回复
(
0
)