首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2) α4能否由α
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2) α4能否由α
admin
2015-08-17
62
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,一1,2,0]
T
.记a=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.问:(1)α
4
能否由α
1
,α
2
,α
3
,α
5
线性表出,说明理由;(2) α
4
能否由α<
选项
答案
(1)α
4
能由α
1
,α
2
,α
3
,α
5
线性表出.由线性非齐次方程组的通解[2,1,0,1]
T
+k[-1,一1,2,0]
T
知α
5
=(k+2)α
1
+(一k+1)α
2
+2kα
3
+α
4
,故α
4
=一(k+2)α
1
一(一k+1)α
2
—2kα
3
+α
5
. (2)α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程组的基础解系只有一个非零向量,故r(α
1
,α
2
,α
3
,α
4
a)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4—1=3,且由对应齐次方程组的通解知,α
1
一α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/fQw4777K
0
考研数学一
相关试题推荐
f(χ)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f′(0)=0.证明:存在ξ∈(-1,1),使得f″′(ξ)=3.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为-12.(1)求a,b.(2)用正交变换化f(x1,x2,x3)为标准型.
求方程一(1一y2)tanx的通解以及满足y(0)=2的特解.
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设A为n阶正定矩阵,证明:存在唯一正定矩阵H,使得A=H2.
设A=E=ααT,其中α为n维非零列向量.证明:(1)A2=A的充分必要条件是α为单位向量;(2)当α是单位向量时A为不可逆矩阵.
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设A,B是满足AB=O的任意两个非零阵,则必有()。
随机试题
《祖国颂》是一首单乐章的合唱曲,气势磅礴,优美清醇,具有鲜明的民族风格,曲作者是()。
A.窦性心律B.心房纤颤快速心室率C.房性期前收缩D.频发或多源性室性早搏E.窦性心动过缓
A.与碱性酒石酸铜试液反应生成红色沉淀B.用醇制氢氧化钾水解后测定熔点进行鉴别C.与亚硝基铁氰化钠反应显蓝紫色D.与硝酸银试液反应生成白色沉淀E.与铜吡啶试液反应显绿色以下药物的鉴别反应是
(2008年真题)层流沿程阻力系数A()。
下列说法正确的是()。
人们面对众多可以满足自己需要的产品,选择的主要依据是()。
和平共处五项原则,是由中国政府在万隆会议上提出,并于1954年4月29日与印度和缅甸政府共同倡导的在建立各国间正常关系及进行交流合作时应遵循的基本原则,其()。
他并不富裕,但还照顾比他自己更穷的亲戚。填入横线部分最恰当的一项是()。
根据所给资料,回答问题。2012年,A省完成港口货物吞吐量13.3亿吨,同比增长14.2%,其中外贸货物吞吐量2.0亿吨,增长24.5%。港口货物吞吐量中,集装箱吞吐量达878.0万标准集装箱,增长3.1%。2012年年末,全省公路里程
Thedefinitionleaves______fordisagreement.
最新回复
(
0
)