首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明: (Ⅰ)存在c∈(0,1),使得f(c)=; (Ⅱ)存在互不相同的ξ,n∈(0,1),
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明: (Ⅰ)存在c∈(0,1),使得f(c)=; (Ⅱ)存在互不相同的ξ,n∈(0,1),
admin
2020-01-15
36
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明:
(Ⅰ)存在c∈(0,1),使得f(c)=
;
(Ⅱ)存在互不相同的ξ,n∈(0,1),
选项
答案
(Ⅰ)根据已知条件,存在a∈(0,1),使得f(a)=M。令F(x)=f(x)[*] 显然F(x)在[0,1]上连续,又因为f(0)=0,n>1,故 F(0)=f(0)[*] F(a)=f(a)[*] 由零点定理可知,至少存在一点c∈(0,a),使得F(c)=f(c)[*]即f(c)=[*] (Ⅱ)在[0,c],[c,1]上分别使用拉格朗日中值定理。已知f(x)在[0,1]上连续,在(0,1)内的可导,则存在ξ∈(0,c)和η∈(c,1),使得 f(c)-f(0)=cf’(ξ),① f(1)-f(c)=(1-c)f’(η),② 由[*]结合f(0)=f(1)=0可得, [f’(η)-f’(ξ)]f(c)=f’(ξ)f’(η),再由结论[*]可知, [*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/WWS4777K
0
考研数学一
相关试题推荐
曲线共有渐近线()
设X1,X2,…,X5是来自总体X~N(0,22)的一个简单随机样本,(Ⅰ)令随机变量,求EY与DY;(Ⅱ)求随机变量的分布;(Ⅲ)给定a(0<a<0.5),常数C满足P{Z>c}=a,设随机变量U~F(2,1),求
yOz平面上的曲线,绕z轴旋转一周与平面z=1,z=4围成一旋转体Ω,设该物体的点密度μ=r2,其中r为该点至旋转轴的距离,求该物体的质心的坐标.
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v1体积单位的均匀速度往该容器注水,并假设开始时容器是空的.[img][/img]
设随机变量X1~N(0,1),i=1,2且相互独立,令Y1=,Y2=X12+X22,试分别计算随机变量Y1与Y1的概率密度.
已知三元二次型xTAx的平方项系数都为0,α=(1,2,一1)T满足Aα=2α.求作正交变换x=Qy,把xTAx化为标准二次型.
设正项级数是它的部分和.证明收敛并求和;
设幂级数在x=6处条件收敛,则幂级数的收敛半径为().
幂级数的和函数为_________
的通解是______.
随机试题
在Word2010的编辑状态中,如果要输入希腊字母Ω,则需要使用的功能区是【】
青铜雕塑《国王与王后》的作者是________。
图示结构的弯矩图是正确的。()
男性,62岁。左侧胫腓骨闭合性骨折,行石膏外固定,3小时后左小腿出现胀痛,并持续加重,足趾麻木,被动牵拉痛。首要的处理是
桂枝的主治病证不包括()
法的指引作用的对象是()。
以下选项中属于致密结缔组织的是()。
已知向量组α1,α2,α3,α4线性无关,则下列命题正确的是()。
根据我国民法,下列行为中可适用无过错原则的是()。
中国经济的迅速兴起是我们这个时代的伟大成就之一。中国的日益繁荣不仅大大地造福于中国人民,也造福于中国在世界各地的贸易伙伴。中国已体验到经济自由给国家带来的财富。中国经济自由的发展使人们有理由期待社会、政治及宗教自由的发展。从长远来讲,这些自由是不可分割的。
最新回复
(
0
)