首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题: (1)若AX=0的解都是BX=0的解,则r(A)≥r(B) (2)若r(A)≥r(B),则AX=0的解都是BX=0的解 (3)若AX=0与BX=0同解,则r(A)=r(B) (4)若
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题: (1)若AX=0的解都是BX=0的解,则r(A)≥r(B) (2)若r(A)≥r(B),则AX=0的解都是BX=0的解 (3)若AX=0与BX=0同解,则r(A)=r(B) (4)若
admin
2019-08-12
53
问题
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:
(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)
(2)若r(A)≥r(B),则AX=0的解都是BX=0的解
(3)若AX=0与BX=0同解,则r(A)=r(B)
(4)若r(A)=r(B),则AX=0与BX=0同解以上命题正确的是( ).
选项
A、(1)(2)
B、(1)(3)
C、(2)(4)
D、(3)(4)
答案
B
解析
若方程组AX=0的解都是方程组BX=0的解,则n-r(A)≤n-r(B),从而r(A)≥r(B),(1)为正确的命题;显然(2)不正确;因为同解方程组系数矩阵的秩相等,但反之不对,所以(3)是正确的,(4)是错误的,选(B).
转载请注明原文地址:https://kaotiyun.com/show/WdN4777K
0
考研数学二
相关试题推荐
设A与B均为正交矩阵,并且|A|+|B|=0,证明:A+B不可逆.
求其中D={(x,y)|0≤x≤3,0≤y≤1}.
设y1=xex+2e2x,y2=xex+3e-x,y3=xex—e2x一e-x为某二阶常系数线性非齐次方程的3个特解,设该方程的y"前的系数为1,则该方程为_________.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ=0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
已知问a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A能否相似于对角矩阵,说明理由.
设f(x1,x2)=,则二次型的对应矩阵是______。
(I)设圆盘的半径为R,厚为h.点密度为该点到与圆盘垂直的圆盘中心轴的距离的平方,求该圆盘的质量m;(Ⅱ)将以曲线y=,x=1,x=4及x轴围成的曲边梯形绕x轴旋转一周生成的旋转体记为V,设V的点密度为该点到旋转轴的距离的平方,求该物体的质量M.
设则f(x)有()
设函数f(x)在(0,+∞)内可导,f(x)>0,且定义数列xn=,证明数列{xn}收敛.
随机试题
已知tan1’=0.00029,则检查距离为5米的国际标准E视力表上1.0该行字母的高度为
李军退休后于2014年3月,以20万元加入某有限合伙企业,成为有限合伙人。后该企业的另一名有限合伙人退出,李军便成为唯一的有限合伙人。2014年6月,李军不幸发生车祸,虽经抢救保住性命,但已成为植物人。对此,下列哪一表述是正确的?(2015年卷三30题,单
下列各种比例尺地形图中,比例尺最大的是( )。
A公司为增值税一般纳税人,不动产、动产适用的增值税税率分别为11%、17%。2017年A公司建造一个生产车间,包括厂房和一条生产线两个单项工程。厂房造价为130万元,生产线安装费用为50万元。A公司采用出包方式出包给甲公司。2017年有关资料如下:资料一
导游服务是导游人员通过向游客提供()而创造特殊使用价值的劳动。
零基预算法的优势主要有()
教育学作为一门独立形态的学科,形成于()
下列词语中,没有错别字的一项是()。
A.回盲部B.盲肠和升结肠C.末端回肠D.乙状结肠和直肠肠阿米巴病的好发部位是
【B1】【B11】
最新回复
(
0
)