首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程满足y(-2)=0并且在定义的区间上可导的特解y(x),并求它的定义区间.
求微分方程满足y(-2)=0并且在定义的区间上可导的特解y(x),并求它的定义区间.
admin
2018-12-21
69
问题
求微分方程
满足y(-2)=0并且在定义的区间上可导的特解y(x),并求它的定义区间.
选项
答案
原方程改写为 [*] 以上的|x|来自ln |x|.而当x=0时,原方程中x在分母上,原方程无定义,上面得到的解式中,x=0处z也无定义,所以要求在区间上可导的特解,这个区间应该是不含x=0在内但含x=-2(初值处)在内.所以只要讨论x<0处.于是 [*] 当x=-2时,y=0,以此初值代入,得0=-ln(2﹢C[*]),所以C=[*],所求特解为 [*] 该解存在导数的定义区间为(﹣∞,[*]).
解析
转载请注明原文地址:https://kaotiyun.com/show/B8j4777K
0
考研数学二
相关试题推荐
(2007年)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是【】
(2004年)把χ→0+时的无穷小量α=∫0χcost2dt,β=,γ=sint3dt排列起来,使排在后面的是前面一个的高阶无穷小,则正确的排列次序是【】
(2011年)设函数y(χ)具有二阶导数,且曲线l:y=y(χ)与直线y=χ相切于原点.记a为曲线l在点(χ,y)处切线的倾角,若,求y(χ)的表达式.
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
设向量组(I)α1,α2,…,αs线性无关,(II)β1,β2,…,βs线性无关,且αi(i=1,2,…,s)不能由(II)β1,β2,…,βs线性表出,βi(i=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设m,n均是正整数,则反常积分的收敛性()
已知的一个特征向量.(1)试确定a,b的值及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
随机试题
在利率期限结构理论中,()认为长短期债券具有完全的可替代性。
焊接机械排气风管要求尽量()。
发盘的撤回与撤销的区别在于()
社会主义社会个人消费品实行按劳分配的前提条件是
Akingonce【C1】______seriouslyill.Hisdoctorsandwisementriedcure【C2】______cure.Butnothing【C3】______.Theywerereadyto
细菌在组织内扩散,与其相关的毒力因子是
膝中至外踝尖的骨度分寸为( )。
老年人患病主要分为
下列关于建设工程项目节能要求的表述错误的是()。
Writeashortessaybasedonthepicturebelow.YoushouldstartyouressaywithabriefaccountofBenefitsandChallengesofO
最新回复
(
0
)