首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是( )
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是( )
admin
2020-03-01
32
问题
设α
1
,α
2
,…,α
s
均为n维列向量,A是m×n矩阵,下列选项正确的是( )
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关。
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关。
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关。
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关。
答案
A
解析
设α
1
,α
2
,…,α
s
线性相关,则存在不全为零的数k
1
,k
2
,…,k
s
,使得
k
1
α
1
+ k
2
α
2
+ … +k
s
α
s
=0。
于是 k
1
Aα
1
+k
2
Aα
2
+ … +k
s
Aα
s
=A(k
1
α
1
+k
2
α
2
+ … +k
s
α
s
)=0,
所以,Aα
1
,Aα
2
,…,Aα
s
线性相关,故选A。
本题主要考查的是向量组线性相关的概念。题目难度不大,直接用概念逐个验证选项。对于C、D两个选项,当α
1
,α
2
,…,α
s
线性无关时,Aα
1
,Aα
2
,…,Aα
s
未必线性相关,也未必线性无关。例如,当α
1
=(1,0)
T
,α
2
=(0,1)
T
时,如果A=
,则Aα
1
=0,所以Aα
1
,Aα
2
线性相关;如果A=
,则Aα
1
=α
1
,Aα
2
=α
2
,线性无关,因此选项C、D不正确。
转载请注明原文地址:https://kaotiyun.com/show/yCA4777K
0
考研数学二
相关试题推荐
设f(x)=,求f(x)的间断点,并分类.
设A为正交矩阵,且|A|=一1,证明:λ=一1是A的特征值。
已知齐次线性方程组的所有解都是方程b1x1+b2x2+…+bnxn=0的解。试证明线性方程组有解。
若α1,α2,α3线性无关,那么下列线性相关的向量组是
微分方程y"+y=x2+1+sinx的特解形式可设为
设A=E一2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则①A是对称矩阵;②A2是单位矩阵;③A是正交矩阵;④A是可逆矩阵。上述结论中,正确的个数是()
设函数y=f(x)在点x=x。处可微,△y=f(x。+△x)-f(x。),则当△x→0时,必有[].
设f(x)是区间上单调、可导的函数,且满足∫0f(x)f(—1)(t)dt=其中f—1是f的反函数,求f(x)。[img][/img]
设f(χ)二阶可导,且f′(χ)>0,f〞(χ)>0,又△y=f(χ+△χ)-f(χ),则当△χ>0时有().
设在[0,1]上f’’(x)>0,则f‘(0),f’(1),f(1)一f(0)或f(0)一f(1)的大小顺序是()
随机试题
EventhoughwomeninU.S.wouldnotgainrighttovoteuntil1920,throughoutthe19-centurymanyfeministgoalsweregradually_
女性,25岁,SLE患者,狼疮性肾病,尿蛋白持续(++),足量糖皮质激素治疗4周无效,应
可用pH梯度法进行分离的化合物是
对绒毛膜上皮癌疗效较好的药物是( )。
前庭大腺(巴氏腺)位于( )。
背景材料:某公路工程施工总承包二级企业承包了单跨跨度为120m,桥梁总长800m的桥梁工程项目,桥梁上部结构施工中出现垮塌事故。监理工程师立即报告建设单位,施工单位着手事故处理。问题:该质量事故由谁负责报告?
律师张某2016年10月取得收入情况如下:(1)从任职的律师事务所取得应税工资8000元,办理业务分成收入23000元,在分成收入案件办理过程中,张某以个人名义聘请了一位兼职律师刘某协助,支付刘某报酬5000元。(2)张某10月份为一家培训机构
甲市政公司委托施工单位乙在街道上施工建设窨井,在施工现场前方50米处高悬一警示牌:“前方施工,危险,请绕行”。丙一天饮酒过量骑自行车闯入施工现场,跌落一深坑中,致丙重伤,自行车报废。则()。
GeorgeWashington______.
【B1】【B12】
最新回复
(
0
)