首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,则在实数域上与A合同的矩阵为
设A=,则在实数域上与A合同的矩阵为
admin
2017-04-24
58
问题
设A=
,则在实数域上与A合同的矩阵为
选项
A、
B、
C、
D、
答案
D
解析
记(D)中的矩阵为D,则由
知A与D有相同的特征值3与一1,它们又都是实对称矩阵,因此存在正交矩阵P与Q,使P
T
AP=
Q
T
DQ,
QP
T
APQ
T
=D,或(PQ
T
)A(PQ
T
)=D,其中PQ
T
可逆,所以A与D合同.
由于|A|=|D|=一3<0,因此实对称矩阵A的两个特征值异号(D亦是),从而知二次型x
T
Ax及二次型x
T
Dx有相同的规范形z
1
2
一z
2
2
,从矩阵角度讲,就是存在可逆矩阵C
1
,C
2
,使C
1
T
AC
1
=
=C
2
T
DC
2
,由此得(C
1
C
2
一1
)
T
A(C
1
C
2
一1
)=D,且C
1
C
一1
可逆,故A与D合同.
对于二次型f(x
1
,x
2
)=x
T
Ax=x
1
2
+4x
1
x
2
+x
2
2
,由于f(1,0)=1>0,f(一2,1)=一3<0,所以A是不定的,由顺序主子式法知备选项(A)、(B)、(C)中的矩阵分别是负定的、正定的、正定的,由于合同的矩阵有相同的正(负)定性,因此备选项(A)、(B)、(C)中的矩阵都不与矩阵A合同,只有备选项(D)正确(也易判定(D)中的矩阵是不定的).
转载请注明原文地址:https://kaotiyun.com/show/Wft4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
设f(x),g(x)(a<x<b)为大于零的可导函数,且f’(x)g(x)-f(x)g’(x)<0,则当a<x<b时,有().
设y=y(x)是区间[-π,π]内过的光滑曲线,当-π<x<0时,曲线上任一点处的法线都过原点,当0≤x≤π时,函数y(x)满足y"+y+x=0,求y(x)的表达式。
求微分方程y"+a2y=sinx的通解,其中常数a>0.
微分方程y"-y=ex+1的一个特解应具有形式(式中a,b为常数)________。
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
已知曲线L的方程为(Ⅰ)讨论L的凹凸性;(Ⅱ)过点(-1,0)引L的切线,求切点(x0,y0),并写出切线的方程:(Ⅲ)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
(2012试题,三)(1)证明方程xn+xn-1+…+x=1(n为大于1的整数),在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
设,则当x→0时,α(x)是β(x)的
(1996年)设f(χ)处处可导,则【】
随机试题
简述公司集团的主要作用。
A.支气管哮喘B.支气管扩张C.慢性支气管炎、肺气肿D.支气管肺癌E.特发性肺间质纤维化局限性哮鸣音
患儿用药导致第八对颅神经损害,造成听力减退,或永久性耳聋,最大可能是应用了哪类药物
患者,男性,65岁,主因咳嗽、咳痰10年,加重伴痰中带血4个月入院。吸烟30余年,20支/d。查体:右肺呼吸音粗,散在细湿啰音。有慢性支气管炎病史10年,无高血压、糖尿病病史患者经过治疗后,支气管胸膜瘘痊愈。术后病理:右肺上叶尖后段不规则形低分化腺癌,
A.促甲状腺素B.绒促性素C.破伤风人免疫球蛋白D.结合雌激素E.重组人促红素在运输中应冷库贮存并避免冻结的药品是
某运转设备的安装水平度允许偏差为纵向0—10,/1000、横向0.20,/1000,测量人员可选用的水平仪精度有()。
在儿童早期,附属内驱力最为突出;到儿童后期和少年期,_________就成为一个强有力的动机因素。
对违法犯罪分子的改造工作,是教育人、挽救人和防止重新犯罪的特殊预防工作。()
Iwouldn’tmarryPatevenifshe______thelastwomanonearth.
AncientGreekphilosopherAristotleviewedlaughteras"abodilyexerciseprecioustohealth."But【B1】______someclaimstothe
最新回复
(
0
)