首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是n阶实对称矩阵A的两个不同的特征值,α是A的对应于特征值λ1的一个单位特征向量,求矩阵B=A—λ1ααT的两个特征值.
设λ1,λ2是n阶实对称矩阵A的两个不同的特征值,α是A的对应于特征值λ1的一个单位特征向量,求矩阵B=A—λ1ααT的两个特征值.
admin
2017-07-26
59
问题
设λ
1
,λ
2
是n阶实对称矩阵A的两个不同的特征值,α是A的对应于特征值λ
1
的一个单位特征向量,求矩阵B=A—λ
1
αα
T
的两个特征值.
选项
答案
由于α是A的对应于特征值λ
1
的一个单位特征向量,于是有Aα=λ
1
α且α
T
α=1,从而 Bα=(A一λ
1
αα
T
)α=Aα—λ
1
αα
T
α=λ
1
α—λ
1
α=0=0.α,故0为B的一个特征值,且α为对应的特征向量. 设β为A的对应于特征值λ
2
的特征向量,则有Aβ=λ
2
β,由于实对称矩阵不同的特征值对应的特征向量正交,于是有α
T
β=0,从而 Bα=(A—λ
2
αα
T
)β=Aβ一λ
1
αα
T
β=λ
2
β一0=λ
2
β, 故λ
2
为B的一个特征值,且β为对应的特征向量.所以,B的特征值必有0和λ
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/WgH4777K
0
考研数学三
相关试题推荐
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=0,则().
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
设其导函数在x=0处连续,则λ的取值范围是__________.
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C为_____.
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
对于任意二事件A1,A2,考虑二随机变量试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.
随机试题
A.心肌纤维B.平滑肌纤维C.两者皆是D.两者皆非有粗肌丝和细肌丝()
班主任的工作重点和经常性工作是()
有关鼻腔鼻窦恶性肿瘤临床特点,下述哪项是错误的()
A.低色素性贫血B.间皮瘤C.易兴奋症、震颤、口腔炎D.白血病E.光感性皮炎过量汞进入体内能引起
在海上货物运输过程中,如果承运人签发的提单,在收货人一栏填写为“凭某某指示”,依照《海商法》的规定,该提单的转让适用下列哪项?()
在混凝土理论配合比确定中,混凝土的施工配制强度按照()确定。
下列各项中,属于经济衰退阶段采用财务管理战略要点的有()。
银行的负债分为()。
2008年1月15日,甲出资5万元设立A个人独资企业(下称“A企业”),主要从事铁皮的加工。甲聘请乙管理企业事务,同时规定,凡乙对外签订标的超过1万元以上的合同,须经甲同意。2月10日,乙未经甲同意,以A企业名义向善意第三人丙购入价值2万元的货物。3月15
Cantabile在音乐术语中是()。
最新回复
(
0
)