首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: 在(a,b)内,g(x)≠0.
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: 在(a,b)内,g(x)≠0.
admin
2021-07-15
47
问题
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:
在(a,b)内,g(x)≠0.
选项
答案
反证法: 设存在一点c∈(a,b),g(c)=0,由g(a)=g(c)=g(b)=0,g(x)在[a,c],[c,b]上两次运用罗尔定理可得,g’(ξ
1
)=g’(ξ
2
)=0,其中ξ
1
∈(a,c),ξ
2
∈(c,b),对g’(x)在[ξ
1
,ξ
2
]上运用罗尔定理可得g"(ξ
3
)=0,其中ξ
3
∈(ξ
1
,ξ
2
),与已知g"(x)≠0矛盾,故g(c)≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Why4777K
0
考研数学二
相关试题推荐
-3
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设证明二次型f对应的矩阵为2ααT+ββT;
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有()
设f(x)在(a,b)二阶可导,x1,x2∈(a,b),x1≠x2,∈(0,1),若f’’(x)>0(∈(a,b)),有f[tx1+(1-t)x2]<tf(x1)+(1-t)f(x2),特别有[f(x1)+f(x2)].
设f(x)是二阶常系数非齐次线性微分方程y’’+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)-0的特解,则当x→0时,()
设n维列向量组α1…,αm(m<n)线性无关,则n维列向量组β1…,βm线性无关的充分必要条件是()
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
设[0,4]区间上y=f(x)的导函数的图形如图2—1所示,则f(x)()
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0﹥0),若导弹方向始终指向飞机,且速度大小为2v.导弹运行方程。
随机试题
学习策略
哮喘发作与食物有关因素
患者,男,32岁。3日来头痛如裹,痛无休止,肢体困重,苔白腻,脉濡。针刺治疗的配穴为
某小学有大批的学生发生不明原因的腹泻,为了寻找病因及流行的线索。通过第一步的研究,结果提示大批学生的腹泻可能与饮用了某厂生产的饮料有关。下一步最好采取
初产妇,妊娠38周。合并心脏病已临产。心率100次/分,心功能Ⅲ级,骨盆测量正常。宫口开大5cm,正枕前位,先露S+1。最适宜的分娩方式是
某演出公司进口舞台设备一套,实付金额折合人民币185万元,其中包含单独列出的进口后设备安装费10万元、中介经纪费5万元;运输保险费无法确定,海关按同类货物同期同程运输费计算的运费25万元。假定关税税率20%,该公司进口舞台设备应缴纳的关税为()。
在文学走出去的过程中,用______的画面表现故事,可以使不同喜好的观众在______文字、图像、声音的立体式信息空间中,进行文学的超时空阅读和赏析。填入划横线部分最恰当的一项是:
宋代书院在教学和管理方面有哪些重要特点?
直线x=2,y=2与圆(x-1)2+(y-1)2=1分别相切于A、B两点,与劣弧AB相切于该劣弧中点的直线方程为
Manyteachersbelievethattheresponsibilitiesforlearningliewiththestudent.【C1】______alongreadingassignmentisgiven,
最新回复
(
0
)