首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0. (2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0. (2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
admin
2016-09-30
60
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).
证明:(1)ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0.
(2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
选项
答案
(1)令F(x)=∫
0
x
f(t)dt,F’(x)=f(x), ∫
0
2
(t)dt=F(2)一F(0)=F’(c)(2一0)=2f(c),其中0<c<2. 因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M, m≤[*]≤M, 由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[*],即f(2)+f(3)=2f(x
0
), 于是f(0)=f(c)=f(x
0
), 由罗尔定理,存在ξ
1
∈(0,c)[*](0,3),使得f’(ξ
1
)=f’(ξ
2
)=0. (2)令φ(x)=e—
—2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](0,3),使得φ’(ξ)=0, 而φ’(x)=e
—2x
[f"(x)一2f’(x)]且e
—2x
≠0,故f"(ξ)—2f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Wou4777K
0
考研数学一
相关试题推荐
设f(χ)在[0,1]上可微,且f(1)=2f(χ)dχ.证明:存在ξ∈(0,1),使得f′(ξ)=2ξf(ξ).
A、 B、 C、 D、 D
[*]
已知是f(χ)当χ>0的一个原函数,则∫χ2f′(χ)dχ=_______.
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设其中g(x)有二阶连续导数,且g(0)=1,gˊ(0)=-1.(I)求fˊ(x);(Ⅱ)讨论fˊ(x)在(-∞,+∞)上的连续性.
曲线y=x2(-1)的全部渐近线方程是_______.
求常数k的取值范围,使得f(x)=kln(1+x)-arctanx当x>0时单调增加.
∫arcsinxarccosxdx
随机试题
在各种变性中,届细胞内物质沉积导致的是
病人自主权违背自我根本利益时,医师有对病人疾病做出诊断属医师的
在水中不溶但可膨胀的分离材料是
按照国家有关规定,重要设备、材料等货物的采购,单项合同估算价在( )万元人民币以上,必须进行招标。
生产单位提前进厂参加施工、设备安装、调试等人员的工资、工资性补贴、劳动保护费等应从()中支付。
发行人应披露其所处行业的基本情况,包括()。
下列会计处理,不正确的是()。
赫鲁晓夫上台后,他选择的改革突破口是()。
对建立良好的程序设计风格,下面有关语句结构描述错误的是()。
文化交流
最新回复
(
0
)