首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)可导,y=f(x2)。当自变量x在x= —1处取得增量△x= —0.1时,相应的函数增量△y的线性主部为0.1,则f′(1)等于( )
设函数f(u)可导,y=f(x2)。当自变量x在x= —1处取得增量△x= —0.1时,相应的函数增量△y的线性主部为0.1,则f′(1)等于( )
admin
2019-02-23
43
问题
设函数f(u)可导,y=f(x
2
)。当自变量x在x= —1处取得增量△x= —0.1时,相应的函数增量△y的线性主部为0.1,则f′(1)等于( )
选项
A、—1
B、0.1
C、1
D、0.5
答案
D
解析
由微分的定义可知,函数f(x)在x
0
点处的增量△y的线性主部即为函数f(x)在该点处的微分dy|
x=x
0
=F′(x
0
)△x,所以有0.1=y′(—1)△x= —0.1y′(—1),即y′(—1)= —1。而
y′(—1)=[f(x
2
)]′|
x= —1
=F′(x
2
).2x|
x= —1
= —2F′(1),
因此F′(1)=0.5,故选D。
转载请注明原文地址:https://kaotiyun.com/show/X104777K
0
考研数学一
相关试题推荐
证明:用二重积分证明
设随机变量X服从(0,2)上的均匀分布,Y服从参数λ=2的指数分布,且X,Y相互独立,记随机变量Z=X+2Y.(Ⅰ)求Z的概率密度;(Ⅱ)求EZ,DZ.
设4阶矩阵A=(α1,α2,α3,α4),已知齐次方程组Ax=0的通解为c(1,一2,1,0)t,c任意.则下列选项中不对的是
设f(x,y)为区域D内的函数,则下列结论中不正确的是
下列函数中在区间[一2,3]上不存在原函数的是
设总体X服从正态分布N(0,σ2),,S2分别为容量是n的样本的均值和方差,则可以作出服从自由度为n-1的t分布的随机变量()
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X的概率密度为则θ的最大似然估计量=______
二次型f(x1,x2,x3)=(x1+x2)2+(x2一x3)2+(x3+x1)2的秩为______.
设已知AX=B有解.(I)求常数a,b的值.(Ⅱ)求X.
设f(x)为连续函数,F(t)=,则F’(2)等于()
随机试题
某女,56岁。心前区疼痛5年,每逢秋冬季加重,近半月时感心前区刺痛,且放射至左肩背部,伴心悸胸闷,舌质紫暗,脉细涩。辨证为
抛物线y2=4x与直线x=3所围成的平面图形绕x轴旋转一周形成的旋转体体积是()。
相对于直接融资来说,间接融资的信誉度较高,风险性相对较小,融资的稳定性较强。()
在美国、加拿大和英围,早餐麦片极受欢迎,是最盈利的行业之一。但是,在法国、德国、意大利以及其他很多国家,早餐麦片就不怎么受欢迎,利润也不高。这体现的是()。
美术是人类感受美、表现美和创造美的重要形式,也是表达自己对周围世界的认识和情绪态度的独特方式。()
下列说法不是杜威实用主义教育学论点的是()。
坚持中国特色新型工业化道路,就要做到()。
47,53,64,36,38,62,29,()
天气预报能为我们的生活提供良好的帮助,它属于计算机的()应用。
Anyphysicaltheoryisalwaysprovisional,inthesensethatitisonlyahypothesis;youcanneverproveit.Nomatterhowmany
最新回复
(
0
)