首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A=求a,b及可逆矩阵P,使得P-1AP=B.
A=求a,b及可逆矩阵P,使得P-1AP=B.
admin
2022-04-07
42
问题
A=
求a,b及可逆矩阵P,使得P
-1
AP=B.
选项
答案
由|λE-B|=0,得λ
1
=-1,λ
2
=1,λ
3
=2,因为A~B,所以A的特征值为λ
1
=-1, λ
2
=1,λ
3
=2. 由tr(A)=λ
1
+λ
2
+λ
3
,得a=1,再由|A|=b=λ
1
λ
2
λ
3
=-2,得b=-2, 即A=[*] 由(-E-A)X=0,得ξ
1
=(1,1,0)
T
; 由(E-A)X=0,得ξ
2
=(-2,1,1)
T
; 由(2E-A)X=0,得考ξ
3
=(-2,1,0)
T
, 令P
1
=[*] 由(-E-B)X=0,得η
1
=(-1,0,1)
T
; 由(E-B)X=0,得η
2
=(1,0,0)
T
; 由(2E-B)X=0,得η
3
=(8,3,4)
T
, 令P
2
=[*] 由P
1
-1
AP
1
=P
2
-1
BP
2
,得(P
1
P
2
-1
)AP
1
P
2
-1
=B, 令P=P
1
P
2
-1
=[*]则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/X1R4777K
0
考研数学三
相关试题推荐
已知a1=(-1,1,a,4)T,a2=(-2,1,5,a)T,a3=(a,2,10.1)T是四阶方阵A的属于三个不同特征值的特征向量,则a的取值为().
设矩阵A=,则A与B().
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设X1,X2,…,Xn来自正态总体X的简单随机样本,且Y1=(X1+X2+…+X6)/6,Y2=(X7+X8+X9)/3,证明统计量Z服从自由度为2的t分布.
设为两个正项级数.证明:
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b—a1+a2+a3+a4,求方程组Ax=b的通解。
设a0,a1,an-1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使Pλ1AP=A.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
随机试题
着重研究如何提高单个工人的生产率的理论是()
最可能的诊断是该患儿的病理转变最严重的是
在一项膀胱癌与吸烟关系的前瞻性队列研究中,发现男性吸烟者膀胱癌的发病率为48.0/10万,不吸烟者为25.4/10万。人群中膀胱癌的发病率为31.0/10万。人群归因危险度百分比为()
病人哮喘时,最佳体位是
设幂级数的收敛半径为2,则幂级数的收敛区间是()。
根据《农田水利条例》(国务院令第669号)第十六条规定,政府投资建设的农田水利工程由县级以上人民政府有关部门组织竣工验收,并邀请有关专家和()参加。
王先生的投资包括三部分,一部分是年收益率为20%的A资产,总价值为15万元;另一部是年收益率为45%的B资产,总价值为10万元;还有一部分是年收益率为30%的C资产,总价值是15万元。那么,王先生这个投资组合的预期收益率是()。
在我国各民族团结坚如磐石的情况下,任何敌人的分裂破坏活动都是注定要彻底失败的。我国各民族之所以“团结坚如磐石”,是因为我国()。①是人民民主专政的社会主义国家,铲除了民族压迫与歧视的阶级根源②已经消除了各民族在政治、经济、文化和社会等方
试论物权的效力。
计算机病毒是指"能够侵入计算机系统并在计算机系统中潜伏、传播,破坏系统正常工作的一种具有繁殖能力的()。"
最新回复
(
0
)