首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列方程的通解: (Ⅰ)(x-2)dy=[y+2(x-2)2]dx; (Ⅱ)y2dx=(x+y2)dy; (Ⅲ)(3y-7x)dx+(7y-3x)dy=0.
求下列方程的通解: (Ⅰ)(x-2)dy=[y+2(x-2)2]dx; (Ⅱ)y2dx=(x+y2)dy; (Ⅲ)(3y-7x)dx+(7y-3x)dy=0.
admin
2018-06-27
69
问题
求下列方程的通解:
(Ⅰ)(x-2)dy=[y+2(x-2)
2
]dx;
(Ⅱ)y
2
dx=(x+y
2
)dy;
(Ⅲ)(3y-7x)dx+(7y-3x)dy=0.
选项
答案
(Ⅰ)原方程改写成[*]=2(x-2)
2
.(一阶线性方程) [*] 积分得[*]=(x-2)
2
+C.通解y=(x-2)
3
+C(x-2),其中C为任意常数. (Ⅱ)原方程改写成[*](以y为自变量,是一阶线性的) 两边同乘[*]=e
y
.积分得[*]=e
y
+C. 通解[*],其中C为任意常数. (Ⅲ)原方程改写成[*](齐次方程),即[*] 令 [*] 分离变量得 [*] 积分得 [*] 通解为(x-y)
2
(x+y)
5
=C,其中C为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/X4k4777K
0
考研数学二
相关试题推荐
设函数f(x)在点x=1的某邻域内有定义,且满足3x≤f(x)≤x2+x+1,则曲线y=f(x)在点x=1处的切线方程为________.
已知三元二次型xTAx的平方项系数均为Ω设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,求矩阵A;
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3,的负惯性指数为1,则a的取值范围是
设3维向量组α1,α2线性无关,β1,β2线性无关.若α1=[1,一2,3]T,α2=[2,1,1]T,β1=[2,1,4]T,β2=[一5,一3,5]T.求既可由α,α线性表出,也可由β1,β2线性表出的所有非零向量ξ.
设证明:f(x,y)在点(0,0)处不可微.
已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维列向量,其a2,a3,a4线性无关,a1=2a2-a3,如果β=a1+a2+a3+a4,求线性方程组Ax=β的通解.
[*]注解求n项之积或和的极限常用方法有:(1)先计算其积或和,再计算其极限;(2)夹逼定理;(3)定积分
用配方法化二次型f(x1,x2,x3)=x12+2x1x2+2x1x3-4x32为标准形.
若xf’’(x)+3x[f’(x)]2=1-ex且f’(0)=0,f’’(x)在x=0连续,则下列正确的是
随机试题
肌肉利用氧的能力主要取决于()。
看到这种手势信号时怎样行驶?
企业集团会计机构的运作关键是()
A、平肝泻火,清心利水B、益气健脾,宣肺利水C、滋阴补肾,平肝潜阳D、滋阴补肾,兼清余热E、健脾化湿肾病综合征肝肾阴虚型治宜
取得建设项目批准文件和规划批准文件的单位和个人,可以向房屋拆迁主管部门申请在规划批准范围内暂停办理下列手续()。
电解Na2SO4水溶液时,阳极上放电的离子是()。
制造过程质量监理的任务就是要建立一个监控状态下的生产系统,具体地讲包括( )。
拉萨至贡嘎机场高速公路通车典礼()下午举行。拉萨至贡嘎机场高速公路是西藏第一条高速公路,2009年4月28日开工,路线全长37.8公里,工程概算总投资15.9亿元,将拉萨市区到贡嘎机场的行车时间缩短了半个小时。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT;(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为。
GreatLakesSausageCompany2317W.DivisionStreetChicago,
最新回复
(
0
)