首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的. 写出注水过程中t时刻
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的. 写出注水过程中t时刻
admin
2014-02-05
63
问题
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上
点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径
的圆面.若以每秒v
0
体积单位的均匀速度往该容器注水,并假设开始时容器是空的.
写出注水过程中t时刻水面高度z=z(t)与相应的水体积V=V(t)之间的关系式,并求出水面高度z与时间t的函数关系;
选项
答案
由截面已知的立体体积公式可得t时刻容器中水面高度z(t)与体积V(t)之间的关系是[*]其中S(z)是水面D(z)的面积,且S(z)=π[z
2
+(1一z)
2
.现由[*]及z(0)=0,求z(t).将上式两边对t求导,由复合函数求导法得[*]这是可分离变量的一阶微分方程,分离变量得S(z)dz=v
0
dt,即[*]两边积分并注意z(0)=0,得[*](*)
解析
转载请注明原文地址:https://kaotiyun.com/show/iU34777K
0
考研数学二
相关试题推荐
(2018年)设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则()
[2004年]设n阶矩阵求可逆矩阵P,使P-1AP为对角矩阵.
(02年)设常数a≠,则=_______.
(2004年)设函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_______。
设f(x)二阶可导,f(x)/x=1,且f(1)=1,证明:存在ξ∈(0,1),使得f"(ξ)一2f’(ξ)=-2。
已知曲线y=kx2(k>0)与相切,试求常数k的值.
过原点(0,0)向曲线Γ:作切线L,记切点为(x0,y0),由切线L、曲线Γ以及x轴围成的平面图形为D.试求曲线Γ的弧微分;
已知函数f(x)在(一∞,+∞)内具有二阶连续导数,且其一阶导函数f′(x)的图形如图8一1所示,则:f(x)的递减区间为___________.
设F(u,v)可微,y=y(x)由方程F[xex+y,f(xy)]=x2+y2所确定,其中f(x)是连续函数且满足关系式∫1xyf(t)dt=x∫1yf(t)dt+y∫1xf(t)dt,x,y>0,又f(1)=1,求:f(x)的表达式。
设f(x)在[a,b]上可导,F(x)=f(x)-x,若F(x)在x=a处取得最小值,在x=b处取得最大值,则()
随机试题
我国古代思想家们有很多关于“人性”问题的讨论,下列属于“人性”问题的观点是
(2009年第152题)促进胃内容物向十二指肠排空的因素有
在破产案件中,管理人由债权人和债务人协商确定。()
在导游过程中既可以调节情绪、摆脱困境、融洽关系,又能寓教于乐的是()。
婴儿产生形状知觉的年龄一般是()。
影响问题解决的主要因素有哪些?
(2017·河南)个体身心发展的互补性要求教育者做到()
设A,B和C都是n阶矩阵,其中A,B可逆,求下列2n阶矩阵的逆矩阵.(1)(2)(3)(4)
微分方程(y2+χ)dχ-2χydy=0的通解为_______.
【B1】【B6】
最新回复
(
0
)