首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
设且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
admin
2017-12-31
50
问题
设
且A~B.
(1)求a; (2)求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为A~B,所以tr(A)=tr(B),即2+a+0=1+(-1)+2,于是a=0. (2)由|λE-A|=[*]=(λ+1)(λ-1)(λ-2)=0得A,B的特征值为 λ
1
=-1,λ
2
=1,λ
3
=2. 当λ=-1时,由(-E-A)X=0即(E+A)X=0得ξ
1
=(0,-1,1)
T
; 当λ=1时,由(E-A)X=0得ξ
2
=(0,1,1)
T
; 当λ=2时,由(2E-A)X/0得ξ
3
=(1,0,0)
T
,取P
1
=[*],则 [*] 当λ=-1时,由(-E-B)X=0即(E+B)X=0得η
2
=(0,1,2)
T
; 当λ=1时,由(E-B)X=0得η
2
=(1,0,0)
T
; 当λ=2时,由(2E-B)X=0得,η
3
=(0,0,1)
T
,取P
2
=[*] [*] 由P
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/XHX4777K
0
考研数学三
相关试题推荐
假设有四张同样卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有a1,a2,a3,现在随意抽取一张卡片,令Ak={卡片上印有ak)。证明:事件A1,A2,A3两两独立但不相互独立.
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相:互独立,若z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3线性表出,说明理由.
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(A)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(A)是极大值;当r(a,
设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是()
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
随机试题
公共关系树立组织形象的原则包括()。
网络接口层
Nosoonerhadhesatdowntolunch______.therewasaknockatthedoor.
男性,50岁,急性心肌梗死入院。入院12小时后体检:血压130/80mmHg,心率100次/分,律齐,S1正常、S2稍增高,双肺底散在湿啰音,但少于双侧肺野的50%,心电图V1~4ST抬高,V1、V2呈QS型.V3、V4呈qR型。CK-MB80U/ml,
关于正常与左心房连接的肺静脉叙述,正确的是
患儿6个月,高热4~5天伴流涕、干咳、纳差;1天来全身出皮疹,为红色粟粒大小斑丘疹,疹间皮肤正常。该患儿应隔离至
如图所示为一引水渠的均匀流过流断面示意图,其边坡系数m=1.5,底宽6=34m,糙率n=0.035,底坡i=1/7000L,堤高为3.2m,电站引水量60m3/s,试计算渠道在保证超高为0.5m的条件下,除电站引用流量外,该渠道还能提供其他用途的流量约为(
重选法与浮选法的不同特点是,重选法是()。
垫层是设置在()之间的结构层。
在考生文件夹下,打开文档WORD2.DOCX,按照要求完成下列操作并以该文件名(WORD2.DOCX)保存文档。【文档开始】【文档结束】设置表格居中、表格列宽为2厘米,行高为0.6厘米、表格所有内容水平居中;设置表格所有框线为1磅
最新回复
(
0
)