首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
设且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
admin
2017-12-31
66
问题
设
且A~B.
(1)求a; (2)求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为A~B,所以tr(A)=tr(B),即2+a+0=1+(-1)+2,于是a=0. (2)由|λE-A|=[*]=(λ+1)(λ-1)(λ-2)=0得A,B的特征值为 λ
1
=-1,λ
2
=1,λ
3
=2. 当λ=-1时,由(-E-A)X=0即(E+A)X=0得ξ
1
=(0,-1,1)
T
; 当λ=1时,由(E-A)X=0得ξ
2
=(0,1,1)
T
; 当λ=2时,由(2E-A)X/0得ξ
3
=(1,0,0)
T
,取P
1
=[*],则 [*] 当λ=-1时,由(-E-B)X=0即(E+B)X=0得η
2
=(0,1,2)
T
; 当λ=1时,由(E-B)X=0得η
2
=(1,0,0)
T
; 当λ=2时,由(2E-B)X=0得,η
3
=(0,0,1)
T
,取P
2
=[*] [*] 由P
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/XHX4777K
0
考研数学三
相关试题推荐
已知y—y(x)是微分方程(x2+y2)dy一dy的任意解,并在y=y(x)的定义域内取x0,记y0一y(x0)。证明:y(x)<y0+一arctanx0;
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3线性表出,说明理由.
设α1=[1,0,一1,2]T,α2=[2,一1,一2,6]T,α3=[3,1,t,4]T,β=[4,一1,一5,10]T,已知β不能由α1,α2,α3线性表出,则t=________.
证明:
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(A)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(A)是极大值;当r(a,
设矩阵A,B满足A*BA=2B4—8E,其中,E为单位矩阵,A*为A的伴随矩阵,则B=_______.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数a的值;
设二次型f=x12+x22+x32+2αx1x2一2βx2x3+2x1x3经正交交换X=PY化成f=y22+2y32,其中X=(x1,x2,x3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β。
随机试题
关于酶原没有酶活性的原因是
某新建5×30m混凝土简支梁桥,应将该桥的上部构造预制和安装划分为2个分部工程。()
对于一般性建设项目的环境影响评价工作,()直接影响到该项目投入生产后,资源能源利用效率和废弃物产生。
企业内部银行是一种经营部分银行业务的非银行金融机构。需要经过中国人民银行审核批准才能设立。()(2014年)
发行价格低于金融工具的票面金额称作()。
关于职业化,正确的说法有()。
根据下列资料,回答下题。2012年1~5月份,全国房地产开发投资22213亿元,同比增长18.5%,增速比1~4月份回落0.2个百分点。其中,住宅投资15098亿元,增长13.6%,增速回落0.3个百分点。1~5月份,商品房销售面积288
1945年8月,毛泽东指出“抗日战争阶段过去了,新的情况和任务是国内斗争”。当时,此斗争主要集中在()
西欧中世纪教育的典型特征是()。
台式计算机中的CPU是指()。
最新回复
(
0
)