首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
设且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
admin
2017-12-31
40
问题
设
且A~B.
(1)求a; (2)求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为A~B,所以tr(A)=tr(B),即2+a+0=1+(-1)+2,于是a=0. (2)由|λE-A|=[*]=(λ+1)(λ-1)(λ-2)=0得A,B的特征值为 λ
1
=-1,λ
2
=1,λ
3
=2. 当λ=-1时,由(-E-A)X=0即(E+A)X=0得ξ
1
=(0,-1,1)
T
; 当λ=1时,由(E-A)X=0得ξ
2
=(0,1,1)
T
; 当λ=2时,由(2E-A)X/0得ξ
3
=(1,0,0)
T
,取P
1
=[*],则 [*] 当λ=-1时,由(-E-B)X=0即(E+B)X=0得η
2
=(0,1,2)
T
; 当λ=1时,由(E-B)X=0得η
2
=(1,0,0)
T
; 当λ=2时,由(2E-B)X=0得,η
3
=(0,0,1)
T
,取P
2
=[*] [*] 由P
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/XHX4777K
0
考研数学三
相关试题推荐
对于任意二事件A1,A2,考虑二随机变量试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.
设A为n阶正定矩阵,证明:存在唯一正定矩阵H,使得A=H2.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设有矩阵Am×n,Bn×m,Em+AB可逆.设其中利用(1)证明:P可逆,并求P-1.
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(A)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(A)是极大值;当r(a,
设矩阵A,B满足A*BA=2B4—8E,其中,E为单位矩阵,A*为A的伴随矩阵,则B=_______.
设c1,c2,…,cn均为非零实常数,A=(aij)m×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)m×n,证明矩阵B为正定矩阵。
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设A为m×n实矩阵,E为n阶单位矩阵。已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵。
随机试题
A.肝破裂B.脾破裂C.胰腺挫伤断裂D.十二指肠断裂E.结肠破裂肠外置造口术
患者,男性,22岁。建筑工人,左下肢外伤后未得到及时、正确地处理,而导致破伤风。护士为该患者更换敷料后,污染敷料的处理方法是
债券是借款单位为筹集资金而发行的一种信用凭证,其特点是()。
某土石坝分部工程的网络计划如图1F420151-1,计算工期为44天。根据技术方案,确定A、D、I三项工作使用一台机械顺序施工。按A→D→I顺序组织施工,则网络计划变为如图1F420151-2所示:①计算工期是多少天?②机械在现场的使用和闲置时间各
根据《住房城乡建设部办公厅关于进一步加强危险性较大的分部分项工程安全管理的通知》,超过一定规模的危险性较大工程施工,施工企业负责人应当()。
价值工程中寿命周期成本是指()
由于内部筹资一般不产生筹资费用,所以内部筹资的资本成本最低。()
具有代表性的质量概念主要有()。
小明在Windows操作系统中创建了一个文本文件,为了保护该文本文件不被其他人修改,小明可以将该文本文件的属性设置为_________。
坎弄—巴德情绪学说认为()。
最新回复
(
0
)