首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。 写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。 写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
admin
2019-08-01
51
问题
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。
写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
选项
答案
麦克劳林公式其实就是泰勒公式中,把函数在点x=0处展开。 f(x)的拉格朗日余项一阶麦克劳林公式为: f(x)=f(0)+f’(0)x+[*]f"(ξ)x
2
=f’(0)x+[*]x
2
, 其中ξ位于0和x为端点的开区间内,x∈[-a,a]。
解析
转载请注明原文地址:https://kaotiyun.com/show/XJN4777K
0
考研数学二
相关试题推荐
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设u=u(x,y)二阶连续可偏导,且,若u(x,3x)=x,u’x(x,3x)=x3,则u’’xy(x,3x)=_______.
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
设f(x)在[a,+∞)上连续,且f(x)存在.证明:f(x)在[a,+∞)上有界.
设f(x)在x=2处连续,且,则曲线y=f(x)在(2,f(2))处的切线方程为__________.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
已知α1,α2,α3线性无关.α1+tα2,α2+2tα3,α3+4tα1线性相关.则实数t等于______.
求星形线的质心,其中a>0为常数.
计算下列不定积分:
随机试题
在绘制网络图时,应用较多的方法是【】
体层摄影中,X线曝光期间连杆摆过的角度称为
轻刺激能唤醒,醒后能进行简短而正确的交谈,见于下列哪种意识障碍
A、肾皮质B、肾髓质C、肾间质D、肾盂E、肾盏血行感染引起的急性肾盂肾炎,细菌最先侵犯
已知图中所示的三根弹簧的劲度系数分别为K1,K2,K3,振体的质量为m,则此系统沿铅垂方向振动的固有频率为( )。
金属材料物理特性随焊接温度的变化是影响焊接应力与变形的主要因素,而材料的()随温度的变化是决定焊接热应力,应变的重要物理特性。
韩国人受西方文化影响,接受礼品要当面打开。()
儿童的心理障碍更多以()为主。
不愿提高政府债务上限的共和党众议员和参议员将____。他们在____具有可怕后果的政策,而最终的结果将与他们声称所要的截然相反,因为违约将立刻让政府的重要性增加而不是减少。依次填入画横线部分最恰当的一项是()。
菲利普·莫里斯发行一种半年付息的债券,具有如下特性:利率为8%,收益率为8%,期限为15年,麦考利久期为10年。(1)利用上述信息,计算调整后的久期。(2)解释为什么调整后的久期是计算债券利率敏感性的较好方法。(3)确定调整后的持有
最新回复
(
0
)