首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明使得F’’(x0)=0.
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明使得F’’(x0)=0.
admin
2018-06-27
99
问题
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)
2
f(x),证明
使得F’’(x
0
)=0.
选项
答案
首先,因f(x)是周期为2π的周期函数,则F(x)也必为周期函数,且周期为2π,于是只需证明[*],使得F’’(x
0
*
)=0即可. 显然F(0)=[*]=0,于是由罗尔定理知,[*],使得F’(x
1
)=0.又 F’(x)=2(sinx-1)f(x)+(sinx-1)
2
f’(x), [*] 对F’(x)应用罗尔定理,由于F(x)二阶可导,则存在x
0
*
∈[*],使得F’’(x
0
*
)=0. 注意到F(x)以2π为周期,F’(x)与F’’(x)均为以2π为周期的周期函数,于是[*]x
0
=2π+x
0
*
,即x
0
∈[*],使得 F’’(x
0
)=F’’(x
0
*
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jak4777K
0
考研数学二
相关试题推荐
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=(α3,α2,α1,β一α4).求方程组Bx=αl—α2的通解.
设f(x)在[0,1]有连续导数,且f(0)=0,令,则必有
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)
设函数f(x)在[0,+∞)内二阶可导,并当x>0时满足xf’’(x)+3戈[f’(x)]2≤1—e-x.又设f(0)=f’(0)=0,求证:当x>0时,
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)求证:由L的参数方程确定连续函数y=y(x),并求它的定义域;
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.求灌满容器所需时间.
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.求水表面上升速度最大
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求秩r(A+E).
设D={(x,y)|x2+y2≤1},证明不等式
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是p1=18—2Q1,p2=12-Q2,其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这
随机试题
重新强调并进一步分赴和发展了社会主义初级阶段理论是党的()。
Ifamotherpusheshersmallsoninaswing,givingonlyalightforceeachtimehereturns,eventuallyhewillbeswingingquit
A.变形链球菌B.乳杆菌C.放线菌D.产黑色普氏菌E.梅毒螺旋体感染根管的优势菌是
主持制定设备监理大纲的是()。
建筑装饰涂料的辅助成膜物质常用的溶剂为()。【2013年真题】
夕}、商投资企业享受特定减免税优惠进口的机器设备自进口之日起超过5年的,可以向海关申请解除监管。()
关于贷款审查与审批,下列说法正确的有()。
请从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
从所给四个选项中,选出能与给定的①、②、③、④零件共同构成如下图所示的9×2方块组合的一项:
材料175年前,世界人民经过浴血奋战,赢得世界反法西斯战争伟大胜利。这是正义的胜利、人民的胜利。在20世纪前半叶人类两度身历惨不堪言的战祸之后,联合国应运而生。走过了75年不平凡历程。世界和平与发展掀开新篇章。联合国的75年,是人类社会
最新回复
(
0
)