首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明使得F’’(x0)=0.
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明使得F’’(x0)=0.
admin
2018-06-27
55
问题
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)
2
f(x),证明
使得F’’(x
0
)=0.
选项
答案
首先,因f(x)是周期为2π的周期函数,则F(x)也必为周期函数,且周期为2π,于是只需证明[*],使得F’’(x
0
*
)=0即可. 显然F(0)=[*]=0,于是由罗尔定理知,[*],使得F’(x
1
)=0.又 F’(x)=2(sinx-1)f(x)+(sinx-1)
2
f’(x), [*] 对F’(x)应用罗尔定理,由于F(x)二阶可导,则存在x
0
*
∈[*],使得F’’(x
0
*
)=0. 注意到F(x)以2π为周期,F’(x)与F’’(x)均为以2π为周期的周期函数,于是[*]x
0
=2π+x
0
*
,即x
0
∈[*],使得 F’’(x
0
)=F’’(x
0
*
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jak4777K
0
考研数学二
相关试题推荐
设函数f(x)在x=1的某邻域内连续,且有求f(1)及f’(1);
设f(x)在(一∞,+∞)内一阶可导,求证:若f(x)在(一∞,+∞)内二阶可导,又存在极限,则存在ξ∈(一∞,+∞),使得f’’(ξ)=0.
设函数f(x)在[0,+∞)内二阶可导,并当x>0时满足xf’’(x)+3戈[f’(x)]2≤1—e-x.又设f(0)=f’(0)=0,求证:当x>0时,
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)求曲线L与x轴所围图形绕Oy轴旋转一周所成旋转体的体积V;
已知三元二次型xTAx的平方项系数均为Ω设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.写出与A相似的矩阵B;
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3证明:α,Aα,A2α线性无关;
设积分区域D:{(x,y)|0≤x≤1,0≤y≤1},求
设函数f(x),g(x)在区间[0,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
随机试题
肾病综合征病人应用糖皮质激素时应该注意()
如图所示的网络图中存在以下错误()。
在美术教学中,认识的主体是()。
使用直线内插法求绝对阈限的心理物理法是
18世纪法国最激进、最彻底的唯物主义者和无神论者霍尔巴赫认为:“人是自然产物,存在于自然之中,服从自然的法则,不能超越自然。”这一观点
请对工作表Sheet1设置保护,使用户只能对工作表做插入行的操作。
算法的空间复杂度是指______。
下列结构中属于线性结构链式存储的是
Johnwasinanurseryschoolforoneyear.
PerhapsonlyalittleboybeingtrainedtobeawizardattheHogwardsschoolmagiccouldcastaspellsopowerfulastocreate
最新回复
(
0
)