首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
admin
2018-06-27
92
问题
设A是m×n矩阵.证明:r(A)=1
存在m维和n维非零列向量α和β,使得A=αβ
T
.
选项
答案
“[*]”记A的列向量组为α
1
,α
2
,…,α
n
,则因为r(A)=1,所以r(α
1
,α
2
,…,α
n
)=1.于是A一定有非零列向量,记α为一个非零列向量,则每个α
i
都是α的倍数.设α
i
=b
i
α,i=1,2,…,n.记β=(b
1
,b
2
,…,b
n
)
T
,则β≠0,并且A=(α
1
,α
2
,…,α
n
)=(b
1
α,b
2
α,…,b
n
α)=αβ
T
. “[*]”设A=αβ
T
,则r(A)≤r(α)=1.由于α,β都不是零向量,可设α的第i个分量α
i
≠0,β的第j个分量b
j
≠0.则A的(i,j)位元素为a
i
b
j
≠0,因此A≠0,从而r(A)>0.得r(A)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/dek4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,…αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+α1,线性无关.
设n阶方阵A的伴随矩阵为A*,且|A|=a≠0,则|A*|等于
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:(1)A2.(2)矩阵A的特征值.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,X1,X2是分别属于λ1和λ2的特征向量,试证明X1+X2不是A的特征向量.
求微分方程y"+5y’+6y=2e-x的通解.
从抛物线y=x2一1的任意一点P(t,t2—1)引抛物线y=x2的两条切线,求这两条切线的切线方程;
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征向量;
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
讨论,在点(0,0)处的连续性、可偏导性及可微性.
设f(x)=求f’(x)并讨论其连续性.
随机试题
中共二大第一次提出了反帝反封建的民主革命纲领,为中国人民指出了明确的斗争目标。同时,开始采取民族资产阶级、小资产阶级的政党和政治派别没有采取过、也不可能采取的革命方法,即
关于肾小球的滤过,下述哪项是错误的()
腹部标志线不包括
紧急避险,是指()。
如果清偿因或有事项而确认的负债所需支出全部或部分预期由第三方补偿,下列说法中,错误的有()。
房地产开发企业销售新房时,土地增值税扣除项目允许单独扣除的税金是()。
为什么说运输能够使商品增值?
某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀"栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销
以下心理学的研究对象中属于个性心理的是
Americandoctorssaythatmotherswhosmokebeforetheirbabiesarebornmayslowthegrowthoftheirbabies’lungs.Theysayre
最新回复
(
0
)