首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2015年] 已知函数f(x,y)满足f″xy(x,y)=2(y+1)ex, f′x(x,0)=(x+1)ex,f(0,y)=y2+2y,求f(x,y)的极值.
[2015年] 已知函数f(x,y)满足f″xy(x,y)=2(y+1)ex, f′x(x,0)=(x+1)ex,f(0,y)=y2+2y,求f(x,y)的极值.
admin
2019-04-05
73
问题
[2015年] 已知函数f(x,y)满足f″
xy
(x,y)=2(y+1)e
x
, f′
x
(x,0)=(x+1)e
x
,f(0,y)=y
2
+2y,求f(x,y)的极值.
选项
答案
由题设条件先求出f(x,y)的表达式,再由二元函数无条件极值判定的充分条件求出极值点及极值. 由f″
xy
(x,y)=2(y+1)e
x
得到 ∫f″
xy
(x,y)dy=∫2(y+1)e
x
dy=(y+1)
2
e
x
+φ(x), 即 f′
x
(x,y)=(y+1)
2
e
x
+φ(x). 又∫f′
x
(x,y)dx=∫[(y+1)
2
e
x
+φ(x)]dx=(y+1)
2
e
x
+∫φ(x)dx+c, 即 f(x,y)=(y+1)
2
e
x
+∫
0
x
φ(x)dx+c. 由f(0,y)=y
2
+2y得(y+1)
2
+c=y
2
+2y,解得c=一1,于是f(x,y)=(y+1)
2
e
x
+∫
0
x
φ(x)dx一1.又由f′
x
(x,0)=(x+1)e
x
得 [(y+1)
2
e
x
+φ(x)]
y=0
=(x+1)e
x
∣
y=0
=(x+1)e
x
, 即e
x
+φ(x)=(x+1)e
x
,解得φ(x)=xe
x
.故 f(x,y)=(y+1)
2
e
x
+∫
0
x
xe
x
dx一1=(y+1)
2
e
x
+(x-1)e
x
. 由[*] 由A=[*]∣
(0,-1)
=[(y+1)
2
e
x
+(x+1)e
x
]∣
(0,1)
=1, B=[*]∣
(0,-1)
=[2(y+1)e
x
]∣
(0,-1)
=0,C=[*]∣
(0,-1)
=2e
x
∣
(0,-1)
=2, 及AC—B
2
=2>0,且A>0,故(0,一1)为极小值点,且极小值为f(0,一1)=一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/XPV4777K
0
考研数学二
相关试题推荐
[*]
用配方法化下列二次型为标准形:f(x1,x2,x3)=2x1x2+2x1x3+6x2x3
设A为n阶非零矩阵,且A2=A,r(A)=r.求|5E+A|.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,…,αr,β的线性相关性.
设矩阵A=相似于对角矩阵.(1)求a的值;(2)求一个正交变换,将二次型f(x1,x2,x3)=xTAx化为标准形,其中x=(x1,x2,x3)T.
求由圆x2+y2=2y与抛物线y=x2所围成的平面图形的面积.
(2004年试题,二)设函数f(x)连续,且f’(0)>0,则存在δ>0,使得().
[2005年]设函数f(x)连续,且f(0)≠0,求极限
[2002年]求∫0+∞
随机试题
原发孔型房间隔缺损在二维超声检查时有什么所见
下列对心交感神经的叙述,错误的是
对投标人和投标文件的要求是( )。
在审批过程中,审批机关提出的对规划的修改意见,组织编制单位应责成承担该规划项目的()进行相应的修改。
下列选项中,赠与成立且赠与人不得主张任意撤销的有()。
在音乐思想上提出“大音希声”观点的是_________。
某旅行团的所有成员都戴帽,男生戴红帽,女生戴白帽。其中一个男生看见红帽、白帽一样多,而一个女生看见的却是红帽数量是白帽的3倍,则该旅行团共有()人。
试述如何培样学生的操作技能。
进行单侧唇裂整复术最适合的年龄为()。
Thevulgarspeechatthatmeetingwas______ofherpoorupbringing.
最新回复
(
0
)