首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2015年] 已知函数f(x,y)满足f″xy(x,y)=2(y+1)ex, f′x(x,0)=(x+1)ex,f(0,y)=y2+2y,求f(x,y)的极值.
[2015年] 已知函数f(x,y)满足f″xy(x,y)=2(y+1)ex, f′x(x,0)=(x+1)ex,f(0,y)=y2+2y,求f(x,y)的极值.
admin
2019-04-05
52
问题
[2015年] 已知函数f(x,y)满足f″
xy
(x,y)=2(y+1)e
x
, f′
x
(x,0)=(x+1)e
x
,f(0,y)=y
2
+2y,求f(x,y)的极值.
选项
答案
由题设条件先求出f(x,y)的表达式,再由二元函数无条件极值判定的充分条件求出极值点及极值. 由f″
xy
(x,y)=2(y+1)e
x
得到 ∫f″
xy
(x,y)dy=∫2(y+1)e
x
dy=(y+1)
2
e
x
+φ(x), 即 f′
x
(x,y)=(y+1)
2
e
x
+φ(x). 又∫f′
x
(x,y)dx=∫[(y+1)
2
e
x
+φ(x)]dx=(y+1)
2
e
x
+∫φ(x)dx+c, 即 f(x,y)=(y+1)
2
e
x
+∫
0
x
φ(x)dx+c. 由f(0,y)=y
2
+2y得(y+1)
2
+c=y
2
+2y,解得c=一1,于是f(x,y)=(y+1)
2
e
x
+∫
0
x
φ(x)dx一1.又由f′
x
(x,0)=(x+1)e
x
得 [(y+1)
2
e
x
+φ(x)]
y=0
=(x+1)e
x
∣
y=0
=(x+1)e
x
, 即e
x
+φ(x)=(x+1)e
x
,解得φ(x)=xe
x
.故 f(x,y)=(y+1)
2
e
x
+∫
0
x
xe
x
dx一1=(y+1)
2
e
x
+(x-1)e
x
. 由[*] 由A=[*]∣
(0,-1)
=[(y+1)
2
e
x
+(x+1)e
x
]∣
(0,1)
=1, B=[*]∣
(0,-1)
=[2(y+1)e
x
]∣
(0,-1)
=0,C=[*]∣
(0,-1)
=2e
x
∣
(0,-1)
=2, 及AC—B
2
=2>0,且A>0,故(0,一1)为极小值点,且极小值为f(0,一1)=一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/XPV4777K
0
考研数学二
相关试题推荐
已知η1=[一3,2,0]T,η2=[一1,0,一2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
(1)A,B为n阶方阵,证明:
设f(u)有连续的一阶导数,且f(0)=0,求,其中D={(x,y)|x2+y2≤t2}.
设f(x)=求f[g(x)].
设z=f(exsiny,x2+y2),且f(u,v)二阶连续可偏导,求
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
位于上半平面向上凹的曲线y=y(x)在点(0,1)处的切线斜率为0,在点(2,2)处的切线斜率为1.已知曲线上任一点处的曲率半径与的乘积成正比,求该曲线方程.
[2008年]设函数y=y(x)由参数方程确定,其中x(t)是初值问题的解,求
[2009年]设z=f(x+y,x—y,xy),其中f具有二阶连续偏导数,求dz与.
(2002年)已知矩阵A=[α1α2α3α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Aχ=β的通解.
随机试题
腮腺手术中寻找面神经颊支的标志是
脊柱结核主要的x线表现是
工程师认为确有必要暂停施工时,应当以书面形式要求承包人暂停施工,并在提出要求后( )h内提出书面处理意见。承包人应当按照工程师的要求停止施工,并妥善保护已完工程。
关于进出口商品收发货人办理报检手续的方式,以下表述正确的有( )。
()是国民经济景气情况的重要信号系统,是反映国民经济情况的“晴雨表”。
下列可以作为抵押财产的是()。
()实践意义很大,一些优秀教师在自己岗位上所作的探索性尝试实验均属该实验范畴。
构成计算机软件的是
Cache的中文译名是()。
Price______isatthetopofthefactorscontributingtotheriseofconstructioncostintheareaaftertheearthquake.
最新回复
(
0
)