首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵,已知线性方程组Ax=β有解但不唯一,试求: (1)a的值. (2)正交矩阵Q,使QTAQ为对角矩阵.
设矩阵,已知线性方程组Ax=β有解但不唯一,试求: (1)a的值. (2)正交矩阵Q,使QTAQ为对角矩阵.
admin
2020-09-25
72
问题
设矩阵
,已知线性方程组Ax=β有解但不唯一,试求:
(1)a的值.
(2)正交矩阵Q,使Q
T
AQ为对角矩阵.
选项
答案
(1)因为解不唯一,因此R(A,β)=R(A)<3,因此先化简增广矩阵. [*] 因此,我们得到[*]解得a=一2. (2)由(1)知|λE一A|=[*]=λ(λ一3)(λ+3), 因此A的特征值为λ
1
=0,λ
2
=3,λ
3
=一3. ①当λ
1
=0时,一Ax=0同解于[*]解得特征向量α
1
=(1,1,1)
T
. ②当λ
2
=3时,(3E—A)x=0同解于[*]得特征向量α
2
=(一1,0,1)
T
. ③当λ
3
=一3时,(一3E—A)x=0同解于[*]得特征向量α
3
=(1,一2,1)
T
. 把α
1
,α
2
,α
3
单位化,得到[*] 令Q=(β
1
,β
2
,β
3
)=[*]即得到Q
T
AQ=Q
-1
AQ=A=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/XPx4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_____.
方程组x1+x2+x3+x4+x5=0的基础解系是_________.
设A=,B为三阶非零矩阵,且AB=0,则r(A)=__________.
设4阶矩阵A与B相似,矩阵A的特征值为则行列式|B-1一E|=________。
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
已知方程组与方程(2)x1+5x3=0,则(1)与(2)的公共解是________。
设A是n阶矩阵,对于齐次线性方程组Ax=0,如果矩阵A中的每行元素的和均为0,且r(A)=n-1,则方程组的通解是______
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
(2013年)当x→0时,1一cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值.
随机试题
论述磷循环的过程、主要特点及其与水体富营养化的关系。
Thecarpethassomanystainsonitthatitneeds______.
动脉导管未闭可出现室间隔缺损常有
上述哪项提示无休克上述哪项提示严重休克
关于印花税的说法,正确的有()。
用收入法核算国内生产总值时,属于非生产要素收入的项目是()。[2008年真题]
控制会谈和转换话题的技巧()。
我国《未成年人保护法》规定任何人不得在中小学校、幼儿园、托儿所的教室、寝室、活动室和其他未成年人集中活动的场所_____。
对于(),侦查人员在讯问犯罪嫌疑人时,应当对讯问过程进行录音或者录像。
(1)"Britain’sbestexport,"IwastoldbytheheadoftheDepartmentofImmigrationinCanberra,"ispeople."Closeon100,000
最新回复
(
0
)