首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 已知函数y=y(x)满足微分方程x2+y2y′=1一y′,且y(2)=0.求y=y(x)的极大值与极小值.
[2014年] 已知函数y=y(x)满足微分方程x2+y2y′=1一y′,且y(2)=0.求y=y(x)的极大值与极小值.
admin
2021-01-19
88
问题
[2014年] 已知函数y=y(x)满足微分方程x
2
+y
2
y′=1一y′,且y(2)=0.求y=y(x)的极大值与极小值.
选项
答案
先求出y′的表达式,令其等于0,求出驻点;再用一阶导数判别法或用二阶导数判别法找出极值点.为求出极值点需先求出函数的表达式. 由所给方程易求得y′=[*]令y′=0,得到y=y(x)的驻点x=±1,下用一阶导数判别法找出y(x)的极值点,事实上,当x<一1时,y′<0;当一1<x<1时,y′>0;当x>1时,y′<0.由此知道x=一1为y=y(x)的极小值点,x=1为y=y(x)的极大值点. 为求出y=y(x)的极值,需先求出y=y(x)的表达式. 由所给方程得到(1+y
2
)dy=(1一x
2
)dx,两边积分得到y+[*]y
3
=x一[*]x
3
+C. 由y(2)=0得C=[*],从而 y+[*] ① 将x=1代入式①得到 y(1)+[*] 可观察看出y(1)=1.将x=一1代入式①得到 y(一1)+[*]=0. 可观察看出y(一1)=0.因而y=y(x)的极小值为y(一1)=0,极大值为y(1)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/XR84777K
0
考研数学二
相关试题推荐
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。(注:m表
[2004年]设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上f(x)=x(x2一4),若对任意x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x。记P=(x,Ax,A2x),求三阶矩阵B,使A=PBP—1;
设四元齐次线性方程组求:方程组(1)与(2)的基础解系;
设f(χ),g(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f′+(a)f′-(b)>0,且g(χ)≠0(χ∈[a,b]),g〞(χ)≠0(a<χ<b),证明:存在ξ∈(a,b),使得.
已知二次型f=2x12+3x22+3x32+2ax2x3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解.
设f(x)在[a,b]三次可微,证明:∈(a,b),使得f(b)=f(a)+(b-a)2f’’’(ξ).
计算积分
随机试题
简述简单蒸气压缩制冷循环的基本构成。
___________是建立组织机构的首要环节或基本途径。
现代政党
简述计算机的组成部件。
镇静催眠药按化学结构可分为
下列因素中,影响企业生产能力的有()。
下列被誉为“国酒”“外交酒”的是()。
国共两党与各革命阶级第一次合作的政治基础是________。
第二代计算机所使用的主要逻辑器件为()。
•Readthearticlebelowaboutproblemsindoinginternationaltrade.•Foreachquestion23-28ontheoppositepage,choosethec
最新回复
(
0
)