首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,2,1,1,1)T,α2=(1,—1,1,0,1)T,α3=(2,1,2,1,2)T是齐次线性方程组Ax=0的解,且R(A)=3,试写出该齐次线性方程组Ax=0。
已知α1=(1,2,1,1,1)T,α2=(1,—1,1,0,1)T,α3=(2,1,2,1,2)T是齐次线性方程组Ax=0的解,且R(A)=3,试写出该齐次线性方程组Ax=0。
admin
2019-06-28
58
问题
已知α
1
=(1,2,1,1,1)
T
,α
2
=(1,—1,1,0,1)
T
,α
3
=(2,1,2,1,2)
T
是齐次线性方程组Ax=0的解,且R(A)=3,试写出该齐次线性方程组Ax=0。
选项
答案
由于α
1
,α
2
,α
3
是5维列向量,故方程组Ax=0有5个变量,而R(A)=3,因此Ax=0的基础解系包含5—R(A)=2个线性无关的解向量。又显然α
1
,α
2
线性无关(对应元素不成比例),故可作为Ax=0的基础解系。由 [*] 可得Ax=0的同解方程组为(x
4
,x
5
为自由变量) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/AiV4777K
0
考研数学二
相关试题推荐
设f(x)=x(x+1)(x+2)…(x+n),则f’(0)=________。
函数y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。求的值;
计算二重积分|x2+y2一1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤1}。
曲线y=1一x+()
设f(x,y)连续,且f(x,y)=,其中D表示区域0≤x≤1,0≤y≤1,则=()
设y=f(x)是区间[0,1]上的任一非负连续函数。又设f(x)在区间(0,1)内可导,且f’(x)>,证明(I)中的x0是唯一的。
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
设m,n均是正整数,则反常积分∫01dx的收敛性()
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2
设f(χ)∈C[i,+∞),广义积分,∫1+∞f(χ)dχ收敛,且满足f(χ)=f(χ)dχ,则f(χ)=_______.
随机试题
企业在进行产品质量决策时应考虑的因素
胆固醇含量最高的脂蛋白是:
男,58岁,吸烟史30年,刺激性咳嗽并痰中带血1个月,X线检查示右肺上叶前段呈炎性征象,痰细胞学检查找到腺癌细胞,体检发现右锁骨上淋巴结肿大。为确定治疗方案,进一步的检查是
十二正经中,联系脏腑最多的经脉是
患者,女性,13岁,反复发作呼气性呼吸困难3年,引起呼气性呼吸困难最常见的病因是
某多层砌体房屋,地基土层为均质淤泥质土,fsk=70kPa,房屋基础底面积A=240mm2。采用深层搅拌桩处理地基,用直径0.7m的单孔搅拌桩(Ap=0.38m2),桩身水泥土fcu=950kPa,现场单桩载荷试验测得Ra=230kN,取桩体强度折减系数η
A公司于2011年3月8日由B公司、C公司、D公司、E公司共同以发起设立方式成立。A公司成立时的股本总额为人民币30000万元(每股面值为人民币1元,下同)。2014年8月8日A公司依法发行10000万股社会公众股,并于8月31日上市;此次发行完毕后,股本
旅游者到饭店用餐形成的服务合同属于合同的推定形式。()
现在学界正涌动着一股“亚洲热”。但在界定这类概念时,却不对所有国家民族一视同仁,所以在汉语的言语共同体之中,“亚洲”基本上是以中国为圆心的一个没画圆的圆圈,而“世界”呢,则是一幅由发达国家组成的美妙远景图。因此()
情景:你的同事张丽明天去出差,你说好要去送她,却突然接到父亲电话,得知母亲病重,要你马上回家。离开办公室时,张丽正在开会。任务:请你用英语给张丽写一张50词左右的便条。内容包括;你为什么马上要回家;明天可能
最新回复
(
0
)