首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设E是n阶单位矩阵,E+A是n阶可逆矩阵,则下列关系式中不恒成立的是( )
设E是n阶单位矩阵,E+A是n阶可逆矩阵,则下列关系式中不恒成立的是( )
admin
2019-01-24
51
问题
设E是n阶单位矩阵,E+A是n阶可逆矩阵,则下列关系式中不恒成立的是( )
选项
A、(E-A)(E+A)
2
=(E+A)
2
(E-A).
B、(E-A)(E+A)
T
=(E+A)
T
(E-A).
C、(E-A)(E+A)
-1
=(E+A)
-1
(E-A).
D、(E-A)(E+A)
*
=(E+A)
*
(E-A).
答案
B
解析
因EA=AE=A,AA
2
=A
2
A=A
3
,AA
-1
=A
-1
A=E,AA
*
=A
*
A=|A|E,故知A和E,A
2
,A
-1
,A
*
乘法运算均可交换.
但(E+A)(E+A)
T
≠(E+A)
T
(E+A).例如
,
事实上,(E-A)(E+A)
T
=[2E-(E+A)](E+A)
T
≠(E+A)
T
[2E-(E+A)]=(E+A)
T
(E-A).
故应选(B).对于(A),(C),(D)均成立.以(C)为例,有
(E-A)(E+A)
-1
=[2E-(A+E)](E+A)
-1
=2E(E+A)
-1
-(A+E)(A+E)
-1
=(E+A)
-1
2E-(A+E)
-1
(A+E)=(A+E)
-1
[2E-(A+E)]
=(A+E)
-1
(E-A).
同理,(A),(D)也成立.
转载请注明原文地址:https://kaotiyun.com/show/XSM4777K
0
考研数学一
相关试题推荐
设二维随机变量(U,V)~N(2,2;4,1;),记X=U一bV,Y=V.(Ⅰ)问当常数b为何值时,X与Y独立?(Ⅱ)求(X,Y)的密度函数f(x,y).
已知齐次线性方程组同解,求a,b,c的值.
有一大批产品,其验收方案如下,先做第一次检验,从中任取10件,经检验无次品则接收这批产品,次品数大于2,则拒收;否则做第二次检验.其做法是从中再任取5件,仅当5件无次品时接收这批产品,若产品的次品率为10%,求:这批产品能够被接收的概率.
随机变量X可能取的值为-1,0,1.且知EX=0.1,EX2=0.9,求X的分布列.
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ一1)f(ξ)=0.
设点A(1,一1,1),B(-3,2,一1),C(5,3,一2),判断三点是否共线,若不共线求过三点的平面的方程.
设的三个解,求其通解.
设直线L:绕y轴旋转一周所成的旋转曲面为∑.求由曲面∑及y=0,y=2所围成的几何体Ω的体积.
设齐次线性方程组,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设函数f(x)=则在点x=0处f(x)().
随机试题
放射检查时,保护对象是儿童,因为儿童处于生长发育期,故对射线损伤非常敏感。()
降低细胞外液的容量,将导致
Cushing病的病因为
选磨正中早接触点时主要选磨
麻疹最常见的并发症是
(2002年考试真题)根据《中华人民共和国合同法》的规定,除法律另有规定或当事人另有约定外,买卖合同标的物的所有权转移时间为()。
Therocketengine,withitssteadyroarlikethatofawaterfallorathunderstorm,isanimpressivesymbolofthenewspaceage.R
求助者:您的分析有道理。可是即便是绝对化要求或者有点以偏概全,但它们并非不合理呀!心理咨询师:这就是我下一步要解决的问题,也是我们工作的核心部分。我们首先要做的是……合理情绪疗法中的认知性家庭作业包括()
陈经理今天将乘飞机赶回公司参加上午10点的重要会议。秘书小张告诉王经理:如果陈经理乘坐的飞机航班被取消,那么他就不能按时到达会场。但事实上该航班正点运行,因此,小张得出结论:陈经理能按时到达会场。王经理回答小张:“你的前提没错,但推理有缺陷;我的结论是:陈
设,其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为()
最新回复
(
0
)