首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
admin
2018-12-19
70
问题
确定常数a,使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(一2,a,4)
T
,β
3
=(一2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示。
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
)。因为β
1
,β
2
,β
3
,不能由α
1
,α
2
,α
3
线性表示,所以r(A)<3(若r(A)=3,则任何三维向量都可以由α
1
,α
2
,α
3
线性表示),从而 [*]=一(a+2)(a一1)
2
=0, 即a=一2或1。 当a=一2时,有 [*] 考虑线性方程组Bx=α
2
。因为系数矩阵的秩为2,增广矩阵的秩为3,所以线性方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
,线性表出,这与题中的已知条件矛盾,故a=一2不合题意。 当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1)
T
,则α
1
=α
2
=α
3
=β
1
+0·β
2
+0·β
3
,说明α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示;而方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解(系数矩阵的秩为1,增广矩阵的秩为2),所以β
2
不能由α
1
,α
2
,α
3
线性表示。故a=1符合题意。
解析
转载请注明原文地址:https://kaotiyun.com/show/XVj4777K
0
考研数学二
相关试题推荐
设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0.已知(x0,y0)gf(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是()
设函数f(u)在(0,+∞)内有二阶导数,且(1)验证(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得
求
设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是()
(2002年)设0<a<b,证明不等式
(2007年)设函数f(χ),g(χ)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的∫0x(t)dt;(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
设f(x)=sinx,f[φ(x)]=1-x2,则φ(x)=_____,定义域为______
随机试题
有效不应期
下列哪项是血糖的主要去路()
若函数________.
Itiscommontothinkthatotheranimalsareruledbyinstinctwhereashumanslosttheirinstinctsandruledbyreason,andthat
腹部叩诊移动性浊音阳性,腹水量至少为
A.纯化水B.蒸馏水C.注射用水D.灭菌注射用水E.制药用水为配制注射剂用的溶剂,经蒸馏所得的无热原水
单位工程由分包单位施工时,分包单位对所承包的工程项目应按规定的程序检查评定,( )应派人参加。
旅游行政管理部门一经查实旅行社以“零付团费”组织旅游活动,诱骗旅游者,并通过安排购物获取回扣,可依法对该旅行社实行没收违法所得、责令停业整顿、并处()罚款的处罚。
教师职业道德区别于其他职业道德的显著标志就是()。
阅读下面的文章,回答后面的问题。季羡林的缺憾人生卞毓方①季先生的《学海浮槎》,记录
最新回复
(
0
)