首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
admin
2018-12-19
45
问题
确定常数a,使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(一2,a,4)
T
,β
3
=(一2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示。
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
)。因为β
1
,β
2
,β
3
,不能由α
1
,α
2
,α
3
线性表示,所以r(A)<3(若r(A)=3,则任何三维向量都可以由α
1
,α
2
,α
3
线性表示),从而 [*]=一(a+2)(a一1)
2
=0, 即a=一2或1。 当a=一2时,有 [*] 考虑线性方程组Bx=α
2
。因为系数矩阵的秩为2,增广矩阵的秩为3,所以线性方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
,线性表出,这与题中的已知条件矛盾,故a=一2不合题意。 当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1)
T
,则α
1
=α
2
=α
3
=β
1
+0·β
2
+0·β
3
,说明α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示;而方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解(系数矩阵的秩为1,增广矩阵的秩为2),所以β
2
不能由α
1
,α
2
,α
3
线性表示。故a=1符合题意。
解析
转载请注明原文地址:https://kaotiyun.com/show/XVj4777K
0
考研数学二
相关试题推荐
设g(x)=∫0xf(u)du,其中则g(x)在区间(0,2)内()
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且证明存在η∈(0,2),使f(η)=f(0);
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt当x取何值时,F(x)取最小值.
曲线在(0,0)处的切线方程为__________.
(2005年)如图,C1和C2分别是y=(1+eχ)和y=eχ的图像,过点(0,1)的曲线C3是一单调增函数的图像,过C2上任一点M(χ,y)分别作垂直于χ轴和y轴的直线lχ和ly.记C1,C2与lχ所围图形的面积为S1(χ);C2,C3与ly所围图形的面
(2015年)设矩阵,若集合Ω={1,2}则线性方程组Aχ=b有无穷多解的充分必要条件为【】
(2011年)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
(1992年)函数y=χ+2cosχ在区间[0,]上的最大值为_______.
求函数y=χ+的单调区间、极值点及其图形的凹凸区间与拐点.
确定下列函数的定义域,并做出函数图形。
随机试题
某频率计测的信号频率值为0.05210MHZ,则其有效数字()
患者,45岁,近1年来月经不规则,据上次月经48天后,发生阴道大出血。妇检:宫颈中度糜烂,子宫饱满,稍软,首选的方法是
以下不属于急性酒精中毒共济失调期的表现的是
阴邪盛而导致的寒实证,其治疗方法是
撤销要约时,撤销要约的通知应当在受要约人发出承诺通知()到达受要约人。
将创建的新表保存为“货币资金表”(存放路径:C:\我的文档)。
在基本经济进货批量模式中,经济进货批量的确定与存货的买价无关。()
莫言的文学创作拥有深厚的地域和民间渊源,他以丰富的想象力,将魔幻现实主义与民间故事融会在一起,从“高密东北乡”的历史与现实中提炼出富有张力的“民间深层经验”。这表明()。
读下面教材内容,完成以下各项。我国洪涝灾害频繁发生的原因:洪涝灾害的成因较为复杂,如季节性的区域强降水、流域地貌特征、江河的洪枯流量变化大、植被分布以及人类活动等因素的相互作用,都可能引发洪涝灾害。一般来说,洪涝灾害的发生受气候因素的影响较大。我国大部分
Chaucerwasthefirstimportantpoettowritein______aftertheNormanConquest.
最新回复
(
0
)