首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2003试题,十)已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0;l2:bx+2cy+3a=0;l3:cx+2ay+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0.
(2003试题,十)已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0;l2:bx+2cy+3a=0;l3:cx+2ay+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2019-03-07
41
问题
(2003试题,十)已知平面上三条不同直线的方程分别为l
1
:ax+2by+3c=0;l
2
:bx+2cy+3a=0;l
3
:cx+2ay+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
根据题设,三条直线交于一点等价于方程组[*]有唯一解.显然方程组的系数矩阵为[*]相应的增广矩阵为[*]必要性由于方程组解唯一,因此必有rA=[*]=2。从而[*]=0,即[*]=3(a+b+c)[(a一b)
2
+(b一c)
2
+(c一a)
2
]=0因为已由题设知三条直线不同,因此a,b,c不全同,因而[(a一b)
2
+(b一c)
2
+(c一a)
2
]≠0只有a+b+c=0从而必要性成立.充分性由(a+b+c)=0,有[*],从而[*].由于[*]和A中共有的子块[*]的行列式为[*]所以[*]且rA=2,因此原方程组有唯一解,即充分性也成立.解析二必要性,设三条直线相交于一点(x
0
,y
0
),则[*]为Ax=0的非零解,其中[*]从而得|A|=0,即[*]又依题知(a一b)
2
+(b一c)
2
+(c一a)
2
≠0,故有a+b+c=0充分性,线性方程组[*]中的三个等式相加,且由a+b+c=0可得,方程组①等价于[*]又[*]=2(ac一b
2
)=一2[a(a+b)+b
2
]=一[a
2
+b
2
+(a+b)
2
]≠0则知方程组②有唯一解,即方程组①也有唯一解,表明三条直线l
1
,l
2
和l
3
交于一点.
解析
转载请注明原文地址:https://kaotiyun.com/show/XX04777K
0
考研数学一
相关试题推荐
设线性方程组与方程x1+2x2+x3=a-1(2)有公共解,求a的值及所有公共解。
设线性方程组(Ⅰ)证明当a1,a2,a3,4两两不相等时,方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),并且β1=(-1,1,1)T和β2=(1,1,-1)T是两个解。求此方程组的通解。
讨论a,b为何值时,方程组无解?有解?有解时写出全部解。
(2008年)计算曲线积分其中L是曲线y=sinx上从点(0,0)到点(π,0)的一段。
(2013年)设函数f(x)由方程y—x=ex(1-y)确定,则=_____________。
(2010年)求微分方程y"一3y′+2y=2xex的通解。
(2010年)求幂级数的收敛域及和函数。
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ1∈(a,b),使得f"(ξ)=g"(ξ)。
设二维随机变量(X,Y)的概率密度为求:(Ⅰ)(X,Y)的边缘概率密度fX(x),fY(y);(Ⅱ)Z=2X—Y的概率密度fZ(z)。
设某班车起点站上客人数X服从参数λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且途中下车与否相互独立,以Y表示在中途下车的人数,求:(Ⅰ)在发车时有n个乘客的条件下,中途有m人下车的概率;(Ⅱ)二维随机变量(X,Y)的概率分布。
随机试题
民用建筑楼板采用现浇钢筋混凝土板时,其最小厚度为()。
不属于干扰素的生物学作用的是
A、1/6B、1/3C、1/2D、2/3E、3/4学龄期儿童中药用量是成人量的
从实施管理的范围来看,()属于资源开发许可证。
基准日A企业所有者权益账面价值2000万元,长期负债账面价值为500万元,流动负债账面价值为1000万元,长期负债与流动负债的投资报酬率分别为8%、5%,A预计资本结构保持不变。评估人员预计未来3年现金净流量分别为120万元、150万元、170万元,第4年
某公司因生产经营的需要再筹资50万元。现有两种筹资方案可供选择:①增发25,000股普通股,每股发行价为20元;②发行债券50万元,债券年利率为10%。公司的息税前盈余目标为40万元,所得税率为25%,该公司筹资后的盈余状况见下表:根据上述资料,回答下
一家果品公司销售果酱。每箱有三罐果酱,果酱共有葡萄、橘子、草莓、桃子、苹果五种口味。每罐果酱只含一种口味。必须按照以下条件装箱:①每箱必须包含两种或三种不同的口味;②含有橘子果酱的箱里必定至少装有一罐葡萄果酱;③桃子果酱与苹果果酱不能装在同一箱内;
项目常见的组织形式包括________。
案例:初中物理“探究通过导体的电流与电压和电阻的关系”的一段课堂教学实录如下:师:同学们,在之前我们学习过电流、电压、电阻,还记得它们对于一个电路都有什么作用?生:电压是产生电流的原因,电压越大,电流越大;电阻表示导体对电流的
Medicinedependsonotherfieldsforbasicinformation,particularlysomeoftheirspecializedbranches.
最新回复
(
0
)