首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年]设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f/(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2x. 求F(x)所满足的一阶微分方程;
[2003年]设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f/(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2x. 求F(x)所满足的一阶微分方程;
admin
2019-03-30
66
问题
[2003年]设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f/(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2
x
.
求F(x)所满足的一阶微分方程;
选项
答案
解一 F’(x)=f’(x)g(x)+f(x)g’(x)=g
2
(x)+f
2
(x) =[f(x)+g(x)]
2
-2f(x)g(x)=(2e
x
)
2
-2F(x). 可见,F(x)所满足的一阶微分方程为F’(x)+2F(x)=4e
2x
. 解二 由给定条件分别求出f(x)与g(x)的表示式,然后求出F(x)=f(x)g(x)的表示式,进一步再求出F’(x)的表示式,最后找出F(x)与F’(x)的表示式的关系. 由f’(x)=g(x),f(x)+g(x)=2e
x
,得到f(x)+f’(x)=2
2x
,解之得 [*] 由f(0)=0得到c=-1.因此f(x)=e
-x
(e
2x
+C)=e
x
-e
-x
,于是g(x)=f’(x) e
x
+e
-x
,则 F(x)=f(x)g(x)=(e
x
-e
-x
)(e
x
+e
-x
)=e
2x
-e
-2x
, F’(x)=2e
2x
+2e
-2x
. 由观察可看出F’(x)+2F(x)=2e
2x
+2e
-2x
+2e
2x
-2e
-2x
=4e
2x
.此即所求的F(x)所满足的一阶微分方程.
解析
转载请注明原文地址:https://kaotiyun.com/show/XaP4777K
0
考研数学三
相关试题推荐
微分方程y"+2y’+5y=0的通解为________。
设[0,4]区间上y=f(x)的导函数的图形如图1—2—1所示,则f(x)()
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
已知A,B为三阶非零矩阵,且β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求(Ⅰ)a,b的值;(Ⅱ)求Bx=0的通解。
设z=f(x+y,x—y,xy),其中f具有二阶连续偏导数,求dz与
设函数f(t)连续,则二重积分dθ∫2cosθ2f(r2)rdr=()
讨论函数f(x)=的连续性.
微分方程y’’-y’-6y=(x+1)e-2x的特解形式为().
求微分方程y’’=y’2满足初始条件y(0)=y’(0)=1的特解.
随机试题
在管理中,决策是()
新生儿Apgar评分的五项依据是下列何项
下列哪项不是导致骨折延迟愈合或不愈合的因素
符合胃癌的胃蛋白酶原检查结果是
腹中结块柔软,时聚时散,攻窜胀痛,脘胁胀闷不适,苔薄,脉弦。治疗方法宜首选
政治权利和自由是公民依法享有的参加国家政治生活的权利和自由。关于政治权利和自由,下列说法中不正确的是哪一项?
江南制造总局是清朝洋务运动中成立的近代军事工业生产机构,同时也是近代中国最大的军火工厂。下列历史人物中,筹建该机构的是()。
把用高级程序设计语言编写的源程序翻译成目标程序(.OBJ)的程序称为()。
Completethesentencesbelow.WriteNOMORETHANTHREEWORDSforeachanswer.
HeinzHi-ProteinNutritiousCereal,thequalityproduct,ismadetothestandardsoftheH.J.HeinzCompany,oneoftheleading
最新回复
(
0
)