首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)上有定义,且对任意实数a,b,都有等式f(a+b)=eaf(b)+ebf(a)成立,又f’(0)=1,求f(x).
设f(x)在(-∞,+∞)上有定义,且对任意实数a,b,都有等式f(a+b)=eaf(b)+ebf(a)成立,又f’(0)=1,求f(x).
admin
2022-06-30
60
问题
设f(x)在(-∞,+∞)上有定义,且对任意实数a,b,都有等式f(a+b)=e
a
f(b)+e
b
f(a)成立,又f’(0)=1,求f(x).
选项
答案
取a=0,b=0得f(0)=0. f’(x)[*] =e
x
f’(0)+f(x)[*]=f(x)+e
x
从而f’(x)-f(x)=e
x
,通解为f(x)=[*]=(x+C)e
x
, 由f(0)=0得C=0,故f(x)=xe
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Y1f4777K
0
考研数学二
相关试题推荐
已知η1,η2,η3,η4是齐次方程组Aχ=0的基础解系,则此方程组的基础解系还可以是
在下列二元函数中,f"xy(0,0)≠f"yx(0,0)的二元函数是
设函数z=(1+ey)cosx—yey,则函数z=f(x,y)()
二次型f=xTAx经过满秩线性变换x=Py可化为二次型yTBy,则矩阵A与B()
设f(x)的导数为sinx,则下列选项中是f(x)的原函数的是[].
设A,B为n阶矩阵,则下列结论正确的是().
已知A是一个3阶实对称正定的矩阵,那么A的特征值可能是()
设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
若函数f(x)在x=1处的导数存在,则极限=________.
设函数F(x)=max{f1(x),f2(x))的定义域为(-1,1),其中f1(x)=x+1,f2(x)=(x+1)2,试讨论F(x)在x=0处的连续性与可导性.
随机试题
溃疡性结肠炎必有的症状是()
治疗坐骨神经痛应选取的主穴为
下列有关口对口人工呼吸的叙述不正确的是
口服地西泮不能应用于
薄、楔束的功能是
人民法院在审判过程中,如果有被告经依法传唤,无正当理由而拒不到庭的,人民法院可以将其拘传。人民法院依法拘传被告人下列做法哪些不符合刑事诉讼法相关规定?
按照PDCA循环开展项目质量管理工作时,P阶段的工作内容是()。
货物查验结束后,报关员在阅读“海关进出境货物查验记录单”时,应注意的情况包括()。
某公司月成本考核例会上,各部门经理正在讨论、认定直接人工效率差异的责任部门。根据你的判断,该责任部门应是()。
ShouldPetsBeForbiddeninDormitory?1.现在很多大学生在寝室养宠物2.有人赞成,有人则反对3.我的观点
最新回复
(
0
)