首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1,α2,α3;(Ⅱ):α1,α2,α4的秩分别为(Ⅰ)=2,秩(Ⅱ)=3.证明向量组α1,α2,α3+α4的秩等于3.
设向量组(Ⅰ):α1,α2,α3;(Ⅱ):α1,α2,α4的秩分别为(Ⅰ)=2,秩(Ⅱ)=3.证明向量组α1,α2,α3+α4的秩等于3.
admin
2019-05-11
56
问题
设向量组(Ⅰ):α
1
,α
2
,α
3
;(Ⅱ):α
1
,α
2
,α
4
的秩分别为(Ⅰ)=2,秩(Ⅱ)=3.证明向量组α
1
,α
2
,α
3
+α
4
的秩等于3.
选项
答案
由向量组(Ⅱ)的秩为3得α
1
,α
2
,α
4
线性无关,从而α
1
,α
2
线性无关, 由向量组(Ⅰ)的秩为2得α
1
,α
2
,α
3
线性相关, 从而α
3
可由α
1
,α
2
线性表示,令α
3
=k
1
α
1
+k
2
α
2
. (α
1
,α
2
,α
3
+α
4
)=(α
1
,α
2
,k
1
α
1
+k
2
α
2
+α
4
) =(α
1
,α
2
,α
4
)[*] 由[*]=1≠0得矩阵[*]可逆, 故r(α
1
,α
2
,α
3
+α
4
)=r(α
1
,α
2
,α
4
)=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/YAV4777K
0
考研数学二
相关试题推荐
求
证明:当χ≥0时,f(χ)=∫0χ(t-t2)sin2ntdt的最大值不超过.
设a1=1,an+1+=0,证明:数列{an}收敛,并求.
设an=,证明:{an}收敛,并求.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设f(χ)在χ=a处二阶可导,则等于().
微分方程y’’-y=ex+1的一个特解应具有形式(式中a,b为常数)().
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)一f(y)|≤|arctanx一arctany|,又f(1)=0,证明:
设一元函数f(x)有下列四条性质:①f(x)在[a,b]连续;②f(x)在[a,b]可积;③f(x)在[a,b]存在原函数;④f(x)在[a,b]可导。若用“P=>Q”表示可由性质P推出性质Q,则有()
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续;②f(x)在[a,b]上可积;③f(x)在[a,b]上可导;④f(x)在[a,b]上存在原函数.以PQ表示由性质P可推出性质Q,则有()
随机试题
下列对心源性呼吸困难的描述中,不正确的是
A.采样B.A/D转换C.D/A转换D.量化E.过滤将连续变化的模拟量转换成离散的数字量的是
心指数等于
世界各国的法院都称作“司法机关”,关于行使司法权的司法机关及其职能,下列哪个说法是错误的?()
2011年10月,A公司法定代表人突然出走,不知去向。A公司内部管理因此陷入混乱。2012年1月,A公司所欠B公司工程款200万元债务到期,B公司要求还款,A公司因无人理事而未予回应。B公司遂于2012年2月10日向人民法院申请A公司破产。A公司
简述学前儿童口语发展的主要特征。
Cancerisusedgenericallyformorethan100differentdiseases,includingmalignanttumoursofdifferentsites,suchasbreast,
茶叶【155】山茶科的一种灌木(或小乔木)的嫩叶经发酵或烘烤焙制而成,是中国人民对世界的一大贡献。茶作为饮料在中国已有两千多年历史,约【156】书于公元前300年的《尔雅》一书中,就已有茶叶的记载。唐代茶叶专家陆羽撰写了世界上最早的一部茶叶专著《茶经》;世
(1)JoanofArcwouldbeproud.EdithCresson,France’sfirstwomanPrimeMinister,hastakenofficewithavowtoleadthecount
NoticeTheWhiteHouseisthemostvisitedresidenceintheworld.ToursmaybescheduledthroughourWashingtonDCoffice.Due
最新回复
(
0
)