首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
考虑一元函数f(x)的下列4条性质: ①f(x)在[a,b]上连续; ②f(x)在[a,b]上可积; ③f(x)在[a,b]上可导; ④f(x)在[a,b]上存在原函数. 以PQ表示由性质P可推出性质Q,则有 ( )
考虑一元函数f(x)的下列4条性质: ①f(x)在[a,b]上连续; ②f(x)在[a,b]上可积; ③f(x)在[a,b]上可导; ④f(x)在[a,b]上存在原函数. 以PQ表示由性质P可推出性质Q,则有 ( )
admin
2019-08-11
74
问题
考虑一元函数f(x)的下列4条性质:
①f(x)在[a,b]上连续;
②f(x)在[a,b]上可积;
③f(x)在[a,b]上可导;
④f(x)在[a,b]上存在原函数.
以P
Q表示由性质P可推出性质Q,则有 ( )
选项
A、①
③.
B、③
④.
C、①
④.
D、④
①.
答案
B
解析
因可导必连续,连续函数必存在原函数,故(B)正确.
(A)是不正确的.虽然由①(连续)可推出②(可积),但由②(可积)推不出③(可导).例如f(x)=|x|在[-1,1]上可积,且
xdx=1,但|x|在x=0处不可导?
(C)是不正确的.由②(可积)推不出④(存在原函数),例如f(x)=
在[-1,1]上可积,且
=-1+1=0,但f(x)在[-1,1]上不存在原函数.因为如果存在原函数F(x),那么只能是F(x)=|x|+C的形式,而此函数在x=0处不可导,在区间[-1,1]上它没有做原函数的“资格”.
(D)是不正确的.因为由④(存在原函数)推不出①(函数连续).反例如下:
它存在原函数
可以验证F′(x)=f(x),但f(x)在x=0处并不连续,即存在原函数可以不连续.
转载请注明原文地址:https://kaotiyun.com/show/yfN4777K
0
考研数学二
相关试题推荐
设,则A相似于()[img][/img]
f(x)=-cosπx+(2x-3)3+(x-1)在区间(-∞,+∞)上零点个数为()
设z=z(x,y)是由方程x2+2y-z=ez所确定,求
一容器在开始时盛有盐水100升,其中含净盐10千克,然后以每分钟2升的速率注入清水,同时又以每分钟2升的速率将含盐均匀的盐水放出,并设容器中装有搅拌器使容器中的溶液总保持均匀.求经过多少分钟,容器内含盐的浓度为初始浓度的一半?
设f″(x0)存在,且,则f″(x0)=______.
设F(x)可导,下述命题:①Fˊ(x)为偶函数的充要条件是F(x)为奇函数;②Fˊ(x)为奇函数的充要条件是F(x)为偶函数;③Fˊ(x)为周期函数的充要条件是F(x)为周期函数.正确的个数是()
设f(x)在(-∞,+∞)上连续,下述命题:①若对任意a,∫-aaf(x)dx=0,则f(x)必是奇函数;②若对任意a,∫-aaf(x)dx=2∫0af(x)dx,则f(x)必是偶函数;③若f(x)为周期为T的奇函数,则F(x)=∫0xf(t)dt也
(13年)当x→0时,1—cosx.cos2x.cos3x与αxn为等价无穷小,求n与a的值.
随机试题
下列句子中,属于复句的是()。
下列不符合腺癌的分级的描述是
下列关于“实”的病机概念的叙述,错误的是
根据《中华人民共和国药品管理法实施条例》,可以委托生产的药品包括()。
房地产经纪人员在房屋查验过程中,对房屋产权的确认,应以()为准。
[2012年,第31题]两人轻声谈话的声强级为40dB,热闹市场上噪声的声强级为80dB。市场上声强与轻声谈话的声强之比为()。
2006年,国家安全监管总局在()的基础上,分别制定并经国务院审查同意印发了《矿山事故灾难应急预案》、《危险化学品事故灾难应急预案》、《陆上石油天然气储运事故灾难应急预案》、《陆上石油天然气开采事故灾难应急预案》、《海洋石油天然气作业事故灾难应急预
下列关于书名号的使用不正确的是()。
选手:比赛:裁判
Attitudesofrespect,modestyandfairplaycangrowonlyoutofslowlyacquiredskillsthatparentsteachtheirchildrenoverm
最新回复
(
0
)