首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为ρxy=-0.5,且P(aX+by≤1)=0.5,则( ).
设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为ρxy=-0.5,且P(aX+by≤1)=0.5,则( ).
admin
2019-11-25
37
问题
设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为ρ
xy
=-0.5,且P(aX+by≤1)=0.5,则( ).
选项
A、a=
,b=-
B、a=
,b=-
C、a=-
,b=
D、a=
,b=
答案
D
解析
因为(X,Y)服从二维正态分布,所以aX+bY服从正态分布,
E(aX+bY)=a+2b,
D(aX+bY)=a
2
+4b
2
+2abCov(X,Y)=a
2
+4b
2
-2ab,
即aX+bY~N(a+2b,a
2
+4b
2
-2ab),
由P(aX+bY≤1)=0.5得a+2b=1,所以选D.
转载请注明原文地址:https://kaotiyun.com/show/YBD4777K
0
考研数学三
相关试题推荐
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
已知n阶矩阵A的每行元素之和为a,当k是自然数时,求Ak的每行元素之和.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:存在ξ∈(0,3),使f’(ξ)=0.
设f(x)在[a,b]上非负,在(a,b)内f”(x)>0,f’(x)<0.已知I2=∫abf(x)dx,I3=(b一a)f(b),则I1,I2,I3的大小关系为()
一实习生用一台机器连续生产了三个同种零件,第i个零件是不合格品的概率(i=1,2,3),以X表示三个零件中合格品的个数,求X的分布律.
验收成箱包装的玻璃器皿,每箱24只装.统计资料表明,每箱最多有2只残品,且含0,1,2件残品的箱各占80%,15%,5&.现在随意抽取一箱,随意检验其中4只,若未发现残品则通过验收,否则要逐一检验并更换.试求:(1)一次通过验收的概率;
设事件A出现的概率为p=0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A出现的次数在450到550次之间的概率α.
将三封信随机地投入编号为1,2,3,4的四个邮筒.记X为1号邮筒内信的数目,Y为有信的邮筒数目.求:(I)(X,Y)的联合概率分布;(Ⅱ)Y的边缘分布;(Ⅲ)在X=0条件下,关于Y的条件分布.
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn则根据列维一林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn().
设A是m×n阶矩阵,则下列命题正确的是().
随机试题
有國有家者,(),不患貧而患不安。
《爱尔克的灯光》中有一段文字是:“傍晚,我靠着逐渐黯淡的最后的阳光的指引,走过十八午前的故居。这条街、这个建筑物开始在我的眼前隐藏起来,像在躲避一个久别的旧友。”这里所用的修辞手法是
原发性肝癌患者突然出现腹部剧痛、腹膜刺激征,应考虑
胫骨
某女,52岁,阴部干涩皲裂,瘙痒难忍,五心烦热,头晕目眩,耳鸣,腰酸腿软,时有烘热汗出。舌红少苔,脉弦细而数。治宜
医疗机构药师的主要工作职责不包括
主动一被动型护患关系不适用于
纳税人、扣缴义务人办理纳税申报时,可以采用的方式有()。
下列不属于课程建设内容的是()。
亚洲、欧洲流经国家最多的国际性河流分别是()。
最新回复
(
0
)