首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设Γ:x=x(t),y=y(t)(a<t<β)是区域D内的光滑曲线,即x(t),y(t),(a,β)有连续的导数且x2(t)+y2(t)≠0,f(x,y)在D内有连续的偏导数,若P0∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点P0沿Γ的切线方向
设Γ:x=x(t),y=y(t)(a<t<β)是区域D内的光滑曲线,即x(t),y(t),(a,β)有连续的导数且x2(t)+y2(t)≠0,f(x,y)在D内有连续的偏导数,若P0∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点P0沿Γ的切线方向
admin
2013-09-03
64
问题
设Γ:x=x(t),y=y(t)(a<t<β)是区域D内的光滑曲线,即x(t),y(t),(a,β)有连续的导数且x
2
(t)+y
2
(t)≠0,f(x,y)在D内有连续的偏导数,若P
0
∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点P
0
沿Γ的切线方向的方向导数为零.
选项
答案
主要基于[*]的方向导数计算公式.其 中α,β为切向量的方向角. 当(x,y)∈Γ时,f(x,y)变成t的一元函数f(z(t)),y(t)), 记P
0
对应的参数为%,即P0为(x(t
0
),),y(t
0
):(x
0
,y
0
). P
0
是(x,y)在Γ的极值点,即t
0
是f(x(t),y(t))的极值点, 于是,由一元函数极值点的必要条件得d/dt f(x)t),y(t))|
t=t0
=0 ① f(x(t),y(t))是二元函数f(x,y)与一元函数x=x(t),y=y(t)的复合,由复合函数 求导法得[*] 其中x=x(t),y=y(t),注意曲线Γ在P
0
点处的切向量是(x
’
(t
0
),y
’
(t
0
)),单位切向量 [*],因此,t=t
0
时由①,②式得 [*] 由于[*] [*]及方向导数的计算公式得
解析
转载请注明原文地址:https://kaotiyun.com/show/YD54777K
0
考研数学一
相关试题推荐
设矩阵求矩阵P,使(AP)T(AP)为对角矩阵.
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x,令P=(x,Ax,A2x).求3阶矩阵B,使A=PBP-1;
设函数f(x)在区间[0,+∞)上连续且单调增加,证明,在[0,+∞)上也单调增加.
设函数,则曲线y=f(x)与x轴所围成的平面图形的面积为________________
设f(x)在0<|x|<δ时有定义,其中δ为正常数,且求极限f(x)/x3.
设连续函数f(x)满足f(x)+(x-t)dt=x(x>0),且f(1)=,则f(x)的极大值点和极大值分别为_________________.
设y=x2定义在[0,2]上,t为[0,2]上任意一点,问当t取何值时,能使图1-10-1中阴影部分面积之和最小.
证明:连续函数取绝对值后函数仍保持连续性,并举例说明可导函数取绝对值不一定保持可导性.
设f(x)在[0,+∞)上连续,且f(0)>0,设f(x)在[0,x]上的平均值等于f(0)与f(x)的几何平均数,求f(x),
试讨论函数g(x)=在点x=0处的连续性.
随机试题
长白山:火山
地区二次变电站从地区一次变电站受电,直接向本地区负荷供电,电压等级一般为65kV。()
患者,男,47岁。烧伤后8天,高热不退,入夜尤甚,神昏谵语,舌红绛光剥无苔,脉细数。中医辨证为
对评估后符合要求的慢性病患者,一次开具的处方药品为
国内仲裁与涉外仲裁异同点的有关说法,下列表述中正确的是:()
评审清单的内容包括( )。
票据权利是( )的权利。
下列各项中,关于可供出售金融资产的会计处理表述正确的是()。
根据以下资料,回答问题。2006年,全国农村外出从业劳动力中,男性劳动力8434万人,占64%。从年龄构成上看,20岁以下占16.1%;21~30岁占36.5%;31~40岁占29.5%;41~50岁占12.8%;51岁以上占5.1%。从文化程
Successinlifedoesnotdependsomuchonone’sschoolrecord______onone’shonestyanddiligence.
最新回复
(
0
)