首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设Γ:x=x(t),y=y(t)(a<t<β)是区域D内的光滑曲线,即x(t),y(t),(a,β)有连续的导数且x2(t)+y2(t)≠0,f(x,y)在D内有连续的偏导数,若P0∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点P0沿Γ的切线方向
设Γ:x=x(t),y=y(t)(a<t<β)是区域D内的光滑曲线,即x(t),y(t),(a,β)有连续的导数且x2(t)+y2(t)≠0,f(x,y)在D内有连续的偏导数,若P0∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点P0沿Γ的切线方向
admin
2013-09-03
85
问题
设Γ:x=x(t),y=y(t)(a<t<β)是区域D内的光滑曲线,即x(t),y(t),(a,β)有连续的导数且x
2
(t)+y
2
(t)≠0,f(x,y)在D内有连续的偏导数,若P
0
∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点P
0
沿Γ的切线方向的方向导数为零.
选项
答案
主要基于[*]的方向导数计算公式.其 中α,β为切向量的方向角. 当(x,y)∈Γ时,f(x,y)变成t的一元函数f(z(t)),y(t)), 记P
0
对应的参数为%,即P0为(x(t
0
),),y(t
0
):(x
0
,y
0
). P
0
是(x,y)在Γ的极值点,即t
0
是f(x(t),y(t))的极值点, 于是,由一元函数极值点的必要条件得d/dt f(x)t),y(t))|
t=t0
=0 ① f(x(t),y(t))是二元函数f(x,y)与一元函数x=x(t),y=y(t)的复合,由复合函数 求导法得[*] 其中x=x(t),y=y(t),注意曲线Γ在P
0
点处的切向量是(x
’
(t
0
),y
’
(t
0
)),单位切向量 [*],因此,t=t
0
时由①,②式得 [*] 由于[*] [*]及方向导数的计算公式得
解析
转载请注明原文地址:https://kaotiyun.com/show/YD54777K
0
考研数学一
相关试题推荐
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.求(A-3E)6.
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.用正交变换x=Py化二次型xTAx为标准形,并写出所用的正交变换;
求点的偏导数.
设函数f(x)在x=a可导,且f(a)≠0,则=_________________.
设平面区域D:x2+y2≤a2,则=()
计算,其中S为锥面被柱面x2+y2=2x所截得的部分.
设广义积分收敛,则α的范围为().
如下图,连续函数y=f(x)在区间[﹣3,﹣2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[﹣2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=
若函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)<0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在x0处的增量与微分,则当△x>0时,必有()。
上的平均值为________.
随机试题
较大事故是指造成3人以上10人以下死亡,或者10人以上50人以下重伤,或者()的事故。
法洛四联症中起主导作用的畸形是
X线照片上相邻两点之间的密度差是
此患儿最可能的诊断是此病X线检查,以下哪项是错误的
核酸中核苷酸之间的连接方式是
某企业2016年利润总额为315万元,其中国债利息收入为15万元。当年按税法核定的业务招待费为250万元,实际发生业务招待费为230万元。假定该企业无其他纳税调整项目,适用的所得税税率为25%,递延所得税资产期初余额为5万元,期末余额为12万元,无递延所得
历史建筑被拆除或者沦为假文物的消息,似乎从来没有缺席过各地的报道。出于发展需要、为了改善民生,甚至可能只是因为个人好恶,各式各样的理由正在让城市的灵魂变得稀薄,陷入千城一面的窘况。而香港,这座被认为“没有历史”的城市,在经济前行的巨轮前也曾经让步,在寸土寸
简述侵犯注册商标专用权的主要情形。
Itlookedjustlikeanotheraircraftfromtheoutside.Thepilottoldhisyoungpassengersthatitwasbuiltin1964.Butappear
调制解调器是______。
最新回复
(
0
)