首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设Γ:x=x(t),y=y(t)(a<t<β)是区域D内的光滑曲线,即x(t),y(t),(a,β)有连续的导数且x2(t)+y2(t)≠0,f(x,y)在D内有连续的偏导数,若P0∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点P0沿Γ的切线方向
设Γ:x=x(t),y=y(t)(a<t<β)是区域D内的光滑曲线,即x(t),y(t),(a,β)有连续的导数且x2(t)+y2(t)≠0,f(x,y)在D内有连续的偏导数,若P0∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点P0沿Γ的切线方向
admin
2013-09-03
60
问题
设Γ:x=x(t),y=y(t)(a<t<β)是区域D内的光滑曲线,即x(t),y(t),(a,β)有连续的导数且x
2
(t)+y
2
(t)≠0,f(x,y)在D内有连续的偏导数,若P
0
∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点P
0
沿Γ的切线方向的方向导数为零.
选项
答案
主要基于[*]的方向导数计算公式.其 中α,β为切向量的方向角. 当(x,y)∈Γ时,f(x,y)变成t的一元函数f(z(t)),y(t)), 记P
0
对应的参数为%,即P0为(x(t
0
),),y(t
0
):(x
0
,y
0
). P
0
是(x,y)在Γ的极值点,即t
0
是f(x(t),y(t))的极值点, 于是,由一元函数极值点的必要条件得d/dt f(x)t),y(t))|
t=t0
=0 ① f(x(t),y(t))是二元函数f(x,y)与一元函数x=x(t),y=y(t)的复合,由复合函数 求导法得[*] 其中x=x(t),y=y(t),注意曲线Γ在P
0
点处的切向量是(x
’
(t
0
),y
’
(t
0
)),单位切向量 [*],因此,t=t
0
时由①,②式得 [*] 由于[*] [*]及方向导数的计算公式得
解析
转载请注明原文地址:https://kaotiyun.com/show/YD54777K
0
考研数学一
相关试题推荐
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.用正交变换x=Py化二次型xTAx为标准形,并写出所用的正交变换;
给定椭球体在第一象限的部分.在何处的切平面与三个坐标面围成的空间区域的体积最小.
设n阶实对称矩阵A满足A2+2A=O,若r(A)=k(0<k<n),则|A+3E|=_______________.
设b>a>0,证明不等式
计算,其中Ω是由三个坐标面及平面x+2y+z=1所围成的有界闭区域
已知线性方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的通解,并说明理由.
设f(x)在区间[0,1]上可微,当0≤x<1时,恒有0<f(1)<f(x),且f’(x)≠f(x).讨论在(0,1)内存在唯一的点ξ,使得
设f(x)为连续函数,f(0)=1,令F(t)=f(x2+y2)dσ(t≥0),则F”(0)=()
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明:对于任意给定的x1∈[a,b],定义xn+1=f(xn),n=1,2,…,则xn存在,且xn=
随机试题
A.麻醉药品B.一类精神药品C.二类精神药品D.处方药E.非处方药专用处方保存三年备查的药品是
(2010年)百年一遇的洪水,是指()。
协调处理现场周围的保护工作是( )的义务。
计算单位工程的工程量应按( )计算。
秦先生目前在某咨询公司任项目经理,月薪税前1.5万人民币,按15%缴纳三险一金,年底约有税前15万元的奖金收入。秦太太是幼儿园教师,工作稳定,每月收入税后3500元。二人目前均为32岁,2005年结婚,2005年6月首付15万元,采用等额本息方式贷款购买了
导游人员在对儿童的接待中,下列说法正确的是()
包装策略主要包括()
税收是国家普遍采用的取得财政收人的形式,它与其他财政收入形式相比,具有()等形式特征。
Hisdogwas______byatrucklastnightanddiedimmediately.
Internetpiracyisdefinedas______.SalesofpiratedsoftwareovertheInternethasbeenencouragedbyallofthefollowingEX
最新回复
(
0
)