首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求抛物面z=1+x2+y2的一个切平面,使该切平面与抛物面及圆柱面(x-1)2+y2=1围成的立体的体积最小,并求出最小体积.
求抛物面z=1+x2+y2的一个切平面,使该切平面与抛物面及圆柱面(x-1)2+y2=1围成的立体的体积最小,并求出最小体积.
admin
2021-02-25
96
问题
求抛物面z=1+x
2
+y
2
的一个切平面,使该切平面与抛物面及圆柱面(x-1)
2
+y
2
=1围成的立体的体积最小,并求出最小体积.
选项
答案
设切点为M
0
(x
0
,y
0
,1+x
2
0
+y
2
0
).则抛物面在点M
0
处的切平面方程为 2x
0
(x-x
0
)+2y
0
(y-y
0
)-[z-(1+x
2
0
+y
2
0
)]=0, 即z=2x
0
x+2y
0
y+(1-x
2
0
-y
2
0
). 所求体积的立体是以此切平面为底,抛物面z=1+x
2
+y
2
为顶,(x-1)
2
+y
2
=1为侧面的柱体,所以由二重积分的几何意义知 [*] 解方程组[*]解得x
0
=1,y
0
=0 又[*],即AC-B
2
>0,A>0,故V
min
=V(1,0)=π/2 此时切平面方程为z=2x
解析
转载请注明原文地址:https://kaotiyun.com/show/na84777K
0
考研数学二
相关试题推荐
设实对称矩阵A=,求可逆矩阵P,使P一1AP为对角矩阵,并计算行列式|A一E|的值.
设y=f(x,t),其中t是由G(x,y,t)=0确定的x,y的函数,且f(x,t),G(x,y,t)一阶连续可偏导,求
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex。求f(x)的表达式;
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
下列矩阵中两两相似的是
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设则其中常数P的取值范围是_________.
(2012年)过点(0,1)作曲线L:y=lnχ的切线,切点为A,又L与χ轴交于B点,区域D由L与直线AB围成.求区域D的面积及D绕χ轴旋转一周所得旋转体的体积.
D是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域,则=_________.
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
随机试题
以下腧穴五行属“金”的是
国家规定实验室三级水检验的pH标准为()。
藿香正气水的功能是()。
根据马克思主义法学的基本观点,下列表述哪一项是正确的?
下列关于举证时限的说法,错误的是( )。
下列关于注册会计师评价审计证据的充分性和适当性的说法,不正确的是()。
(1)影响人类生活(2)引发沙尘暴(3)中长距离输送(4)强上升气流作用(5)粉沙、细土和微尘飞扬
在产业化过程中,植物的用水量实际并不大。比如滴灌技术,是目前世界上公认的节水效果最好的灌溉技术,但它一小时的水流量也达到2千克以上。它将水灌在地表,若水量小,还没渗入到植物根茎就蒸发了,水量大又会渗到根茎之下,存在很大的浪费。而固化水技术的使用成本太高,很
生态经济是指不破坏环境、不污染环境的经济,不以不可再生资源为基础的经济。根据上述定义,下列属于生态经济的是()。
设{un},{cn)为正项数列,证明:(1)若对一切正整数n满足cnun一cn+1un+1≤0,且发散,则un也发散;(2)若对一切正整数n满足一cn+1≥a(a>0),且收敛,则un也收敛.
最新回复
(
0
)