首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵为A*,证明: (Ⅰ)若|A|=0,则|A*|=0; (Ⅱ)|A*|=|A|n—1。
设n阶矩阵A的伴随矩阵为A*,证明: (Ⅰ)若|A|=0,则|A*|=0; (Ⅱ)|A*|=|A|n—1。
admin
2017-12-29
44
问题
设n阶矩阵A的伴随矩阵为A
*
,证明:
(Ⅰ)若|A|=0,则|A
*
|=0;
(Ⅱ)|A
*
|=|A|
n—1
。
选项
答案
(Ⅰ)(反证法)假设|A
*
|≠0,则有A
*
(A
*
)
—1
=E。又因为AA
*
=|A|E,且|A|=0,故 A=AE=AA
*
(A
*
)
—1
=|A|E(A
*
)
—1
=0, 所以A
*
=O。这与|A
*
|≠0矛盾,故当|A|=0时,有|A
*
|=0。 (Ⅱ)由于AA
*
=|A|E,两端同时取行列式得 |A||A
*
|=|A|
n
。 当|A|≠0时,|A
*
|=|A|
n—1
;当|A|=0时,|A
*
|=0。 综上,有|A
*
|=|A|
n—1
成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/YFX4777K
0
考研数学三
相关试题推荐
利用列维一林德伯格定理,证明:棣莫弗一拉普拉斯定理.
f(x)在[0,1]上连续,(0,1)内可导,且f(1)=.证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1一ξ-1)f(ξ).
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是,r阶单位阵.
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位阵.计算行列式|A一3E|的值.
已知A,B均是3阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第1列和第2列对换得到B1,又A1B1=,则AB=________.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(A)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是k________.
已知3阶矩阵A与3维向量x,使得向量组x,Ax,A2x线性无关.且满足A3x=3Ax一2A2x.计算行列式∣A+E∣.
随机试题
青少年好发的肿瘤为()。
Farmersareallowedtogrowsmallgardensoftheirownandtheyselltheirvegetables______theblackmarket.
如果取精液检查,应在检查前至少几天内不排精。
华支睾吸虫对人的危害主要是
关于胰岛素治疗,下列不妥的是下列哪一部位不可注射胰岛素
治疗成人呼吸窘迫综合征最有效的措施为()
《中华人民共和国广告法》规定,药品、医疗器械广告不得有的内容是()
设齐次线性方程组当方程组有非零解时,k值为:
某工业企业仅生产甲产品,采用品种法计算产品成本。3月初在产品直接材料成本130万元,直接人工成本18万元,制造费用10万元。3月份发生直接材料成本80万元,直接人工成本4871元,制造费用6万元。3月末甲产品完工100件,在产品200件。月末计算完工产品成
Translatingisacomplexandfascinatingtask.Infact,A.Richardshasclaimedthatitisprobablythemostcomplextypeofeve
最新回复
(
0
)