首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)、g(x)均为连续二阶可导的函数,若曲线积分 其中L为平面上任意一条简单封闭曲线. (1)试求:f(x)、g(x)使得f(0)=g(0)=0. (2)计算沿任意一条曲线从点(0,0)到点(1,1)的曲线积分.
设f(x)、g(x)均为连续二阶可导的函数,若曲线积分 其中L为平面上任意一条简单封闭曲线. (1)试求:f(x)、g(x)使得f(0)=g(0)=0. (2)计算沿任意一条曲线从点(0,0)到点(1,1)的曲线积分.
admin
2017-05-31
111
问题
设f(x)、g(x)均为连续二阶可导的函数,若曲线积分
其中L为平面上任意一条简单封闭曲线.
(1)试求:f(x)、g(x)使得f(0)=g(0)=0.
(2)计算沿任意一条曲线从点(0,0)到点(1,1)的曲线积分.
选项
答案
在曲线积分[*][y
2
f(x)+2ye
x
+2yg(x)]dx+2[yg(x)+f(x)]dy中,令P(x,y)=y
2
f(x) +2ye
x
+2yg(x),Q(x,y)= 2[yg(x)+f(x)]则[*] (1)由于曲线积分与路径无关,则[*]即2yg’(x)+ 2f’(x)= 2yf(x)+2e
x
+2g(x),亦即yg’(x)+ f’(x)= yf(x)+e
x
+g(x) .比较变量y的同次幂前的系数,得[*]于是,就有g’’(x) 一g(x)=e
x
.解此二阶线性微分方程,得通解为g(x)=c
1
e
x
+c
2
e
一x
+[*],其中c
1
c
2
为任意常数.根据条件g(0)=0,g’(0)= f(0)=0,得[*] (2)再由曲线积分与路径无关,可取路径为OAB,如图1—9—3所示, [*] 则I=∫
L
[y
2
f(x)+2ye
x
+2yg(x)]dx+2[yg(x)+f(x)]dy=∫
0
1
P(x,0)dx+∫
0
1
Q(1,y)dy=∫
0
1
0dx+∫
0
1
2[yg(1)+f(1)]dy=g(1)+2f(1)[*]
解析
(1)利用曲线积分与路径无关的充要条件,将问题化为微分方程问题,这是一类很典型的综合题型.
(2)利用曲线积分与路径无关的充分必要条件在求解曲线积分时,一般均采用折线段的方法.
转载请注明原文地址:https://kaotiyun.com/show/vYu4777K
0
考研数学一
相关试题推荐
[*]
[*]
0.0523
下列函数y=f(u),u=ψ(x)中能构成复合函数y=f[ψ(x)]的是[]
设f(x)是奇函数,f(1)=a,且f(x+2)-f(x)=f(2).(1)试用a表示,f(2)与f(5);(2)问a取何值时,f(x)以2为周期.
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设函数Y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
随机试题
在公交车上,甲看中乘客乙价值5000元的手包,在公交车到站准备开门的时候,夺过手包就跑下车,乘客乙追着不放,好心的乘客丙也帮忙下车追赶甲。跑出200米后,甲拿起旁边水果摊的水果刀威胁丙“再过来我就不客气了”。丙毫不示弱,拼死抢回了乙的手包。关于甲的行为,下
有限责任公司的股东人数为()
对肾脏毒性较大的药物为
一般来说,不宜直接使用实际成交价格来判断估价结果的准确性。()
墙面抹石灰浆的硬化产生的化学反应为()。
企业在按照会计准则规定采用公允价值计量相关资产或负债时,下列各项有关确定公允价值的表述中,正确的是()。
根据韩国的民俗,不用()作为礼品。
十六世纪活跃在法国宫廷的美术流派是()。
Annarefusedto______thecarkeystoherhusbanduntilhehadpromisedtowearhissatietybelt.
ItwasmusictomyearstohearthattheGovernment’schiefadviseron【C1】______,SusanJebb,wantsparentsto【C2】______fruitj
最新回复
(
0
)